On the Electrochemical Reduction of O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorthioate (Fenitrothion) Pesticide in Acetonitrile Solution

Acetonitrile 용액중에서 살충제 O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorothioate (Fenitrothion)의 전기화학적 환원

  • 김일광 (원광대학교 자연과학대학 화학과) ;
  • 김윤근 (원광대학교 자연과학대학 화학과) ;
  • 천현자 (원광대학교 자연과학대학 화학과)
  • Published : 1988.06.20

Abstract

The electrochemical reduction of O,O-dimethyl-O-(3-methyl-4-nitrophenyl)-phosphorothioate (Fenitrothion) has been studied in acetonitrile solution containing surfactant micelle by direct current (DC)-differential pulse (DP) polarography, cyclic voltammetry (CV) and controlled potential coulometry (CPC). The partially reversible electron transfer-chemical reaction(EC, EC mechanism) of fenitrothion reduction proceeded by four electron transfer to form O,O-dimethyl-O-(3-methyl-4-hydroxyaminophenyl)-phosphorothioate which undergoes single bond of the phosphorus atom and phenoxy group cleaves to give p-amino-m-cresol and dimethyl thiophosphinic acid as major product by two electron transfer-protonation at higher negative potential. The polarograpic reduction waves shown to suppressed due to inhibitory effect of sodium lauryl sulfate micelle solution and split up on selectivity of anionic micelle effect in two step at the first reduction peak.

계면활성 micelle을 형성하는 acetonitrile 용액을 O,O-dimethyl-O-(3-methyl-4-nitrophenyl)-phosphorothioate (Fenitrothion)의 전기화학적 환원을 direct current 및 differential pulase polarography, cyclic voltammetry 그리고 controlled potential coulometry 방법으로 연구하였다. Fenitrothion의 환원과정은 1단계로 4 전자 이동에 의한 부분 가역적 전자이동 화학반응(EC, EC)기구로 O,O-dimethyl-O-(3-methyl-4-hydroxyaminophenyl)-phosphorothioate를 형성하고, 더 높은 음전위에서 2 전자 이동에 따른 양성자 반응으로 phosphorus 원자와 phenoxy group의 단일 결합이 끊어지면서 주 생성물인 p-amino-m-cresol과 dimethyl thiophosphinic acid를 생성하였다. Sodium lauryl sulfate micelle 용액에서 polarography 환원파는 전체적으로 억제 되었으며 특히 1차 환원파는 음이온 micelle의 선택적 작용으로 2단계로 분리되었다.

Keywords

References

  1. The pesticide Manual C. R. worhthing(ed.)
  2. J. Pesticide Sci. v.2 J. Miyamoto
  3. J. Pesticide Sci. v.3 Y. Takimoto
  4. J. Pesticide Sci. v.3 K. Mihara(et. al.)
  5. J. Pesticide Sci. v.4 K. Mihara(et. al.)
  6. Int. J. Environ. Anal. Chem. v.8 G. Volpe;V. M. Mallet
  7. Sock. Natl. Res. Conce. Can. v.77 R. Greenhalgh;J. Shoolery;Environ
  8. J. Agri. Food Chem. v.24 R. Greenhalgh;W. Marshall
  9. J. Pesticid Sci. v.3 I. Miyamoto
  10. Agr. Bial. Chem. v.38 H. Ohkawa
  11. Bull. Environ. Contam. Toxicol. v.27 J. B. Addison
  12. J. Pesticide Sci. v.5 K. Tsji
  13. J. Am. Chem. Soc. v.88 W. M. Gulick;D. H. Geske
  14. Topic in Phoshporus Chemistry v.9 P. Schipper
  15. J. Korean Agri. Chem. Soc. v.26 N. D. Sung;S. H. Park
  16. Zh. Anal. Khim. v.31 N. A. Sobina;L. Y. Kheifets(et. al.)
  17. J. Chromatogr. v.59 J. Seifert;J. Davidek
  18. Anal. Chem. Acta v.31 P. Nangniot
  19. Polarography M. Kolthoff;J. J. Lingane
  20. Anal. Chem. v.38 D. N. Hume
  21. Anal. Chem. v.34 J. F. Coetzee;G. P. Cunningham
  22. Principles of Polarography J. Heyrovsky;J. Kuta
  23. Electroanalytical Chemistry J. J. Lingane
  24. Electrochemical Methods A. J. Bard;R. Fulker
  25. The Elucidation of Organic Electrode Processes P. Zuman
  26. Anal. Chem. v.36 R. S. Nicholson;I. Shain
  27. Polarographic Techniques L. Meites
  28. Anal. Chem. v.34 L. B. Rogers;D. J. Pietrzyk
  29. Ph. D. Dissertation, Florida State Univ. C. M. Park
  30. J. Electroanal. Chem. v.88 J. M. Saveant
  31. J. Electroanal. Chem. v.139 J. H. Barnes;M. D. Hawley