DOI QR코드

DOI QR Code

Precipitation, Resolubilization and Luminescent Properties of Tris (2,2$^\prime$-diimine)Ruthenium(II) Complexes in Premicellar Anionic Surfactant Solutions

  • Published : 1988.10.20

Abstract

Premicellar precipitation, resolubilization and luminescing behaviors of $RuL_3^{2+}$ (L = bpy, phen, $Me_2bpy$) in aqueous alkylsulfate and sulfonate solutions were studied. Addition of the anionic surfactants to $RuL_3\;^{2+}$ solutions caused initial precipitation which was redissolved by further addition of the surfactants. The apparent solubility products $K_{sp}$'s of the precipitates were evaluated assuming 1:2 salt formation. The values were smaller as the ligand is more hydrophobic and the length of hydrocarbon chain of the surfactant is longer. The $K_{sp}$ values for L = bpy were constant over wide surfactant concentration range. However, those for L = $Me_2bpy$ and also for phen, but to less extent, increased with the surfactant concentration. The resolubilization of 1:2 salts was followed by red-shift of emission band and extensive emission quenching above critical concentration of the surfactants. The critical concentration was lower for more hydrophobic surfactant. For L = $Me_2bpy$, the blue-shifted emission band with enhanced emission intensity was observed in intermediate surfactant concentration region. The high ionic strength of media prevented the precipitate formation, but facilitated the red-shift of the emission bands. The results support that the precipitate is dissolved by accretion of surfactant anions to the salts to form water-soluble surfactant-rich $RuL_3$-surfactant anionic species. These species appeared to aggregate cooperatively to produce large clusters which exhibited the red-shifted emission.

Keywords

References

  1. Acc. Chem. Res. v.13 D. G. Whitten
  2. Membrane Mimetic Chemistry J. H. Fendler
  3. The Chemistry of Ruthenium E. A. Seddon;K. R. Seddon
  4. Photochemistry in Microheterogeneous Systems K. Kalayanasundaram
  5. J. Am. Chem. Soc. v.99 U. Lachish;M. Ottolenghi;J. Rabani
  6. J. Am. Chem. Soc. v.100 D. Meisel;M. S. Matheson;J. Rabani
  7. J. Am. Chem. Soc. v.102 R. H. Schmehl;D. G. Whitten
  8. J. Phys. Chem. v.84 M. A. J. Rodgers;J. C. Becker
  9. Chem. Phys. Lett. v.72 J. H. Baxendale;M. A. J. Rodgers
  10. J. Am. Chem. Soc. v.103 T. K. Foreman;W. M. Sobol;D. G. Whitten
  11. Chem. Phys. Lett. v.84 K. Mandel;J. N. Demas
  12. Chem. Lett. (Jpn.) H. Sato;M. Kawasaki;K. Kasatani;T. Ban
  13. J. Phys. Chem. v.86 J. H. Baxendale;M. A. J. Rodgers
  14. J. Phys. Chem. v.87 T. Miyashita;T. Murakata;M. Matsuda
  15. J. Am. Chem. Soc. v.105 B. L. Hauenstein, Jr.;W. J. Dressick;S. L. Buell;J. N. Demas;B. A. DeGraff
  16. Inorg. Chem. v.23 W. J. Dressick;B. L. Hauenstein, Jr.;J. N. Demas;B. A. DeGraff
  17. J. Phys. Chem. v.89 T. Miyashita;T. Murakata;Y. Yamaguchi;M. Matusuda
  18. J. Am. Chem. Soc. v.107 K. Takagi;K. Aoshima;Y. Sawaki;H. Iwamura
  19. J. Am. Chem. Soc. v.108 W. J. Dressick;J. Cline, III;J. N. Demas;B. A. DeGraff
  20. Chem. Phys. Lett. v.68 Y. Kusumoto;H. Sato
  21. J. Photochem. v.17 H. Sato;M. Kawasaki;K. Kasatani
  22. Chem. Phys. Lett. v.71 H. Sato;Y. Kusumoto;N. Nakashima;K. Yoshihara
  23. J. Phys. Chem. v.87 H. Sato;M. Kawasaki;K. Kasatani
  24. Bull. Korean Chem. Soc. v.7 J. W. Park;Y. H. Paik
  25. Inorg. Chem. v.23 B. L. Hauenstein, Jr.;K. Mandal;J. N. Demas;B. A. DeGraff
  26. J. Am. Chem. Soc. v.98 C-T. Lin;W. Bottcher;M. Chou;C. Creutz;N. Sutin
  27. Bull. Korean Chem. Soc. v.7 J. W. Park;H. Chung
  28. J. Phys. Chem. v.89 D. Y. Chu;J. K. Thomas
  29. J. Phys. Chem. v.86 J. Wheeler;J. K. Thomas
  30. J. Phys. Chem. v.89 W. Shi;S. Wolfgang;J. C. Strekas;H. D. Gafney
  31. J. Phys. Chem. v.89 J. Ferguson;E. Krausz;M. Maedar
  32. Inorg. Chem. v.25 J. Ferguson;E. Krausz