Abstract
Mechanism of electrochemical polymerization of pyrrole (Py) on a Pt electrode in acidic aqueous solutions was studied by means of potentiostatic measurements, cyclic voltammetry and chronopotentiometry. Pyrrole molecule appeared to be initially oxidized via two-electron transfer step to produce oxidized pyrrole ion ($Py^+$), which was coupled with a non-oxidized pyrrole to yield a dimerized species, Py-Py. The Py-Py thus formed was further oxidized again via two-electron transfer step, which was followed by coupling with non-oxidized monomer and by concomitant expulsion of a $H^+$. Then the latter chain extension process was repeated. The chain extension and polypyrrole oxidation reactions occurred competitively.