DOI QR코드

DOI QR Code

Dipole Moments of the OH, OH$^+$, and OH$^-$Valence States by ab initio Effective Valence Shell Hamiltonian Method

  • Sun, Ho-Sung (Department of Chemistry, Pusan National University)
  • Published : 1988.04.20

Abstract

The ab initio effective valence shell Hamiltonian method, based on quasidegenerate many-body perturbation theory, is generalized to calculate molecular properties as well as the valence state energies which have previously been determined for atoms and small molecules. The procedure requires the evaluation of effective operator for each molecular property. Effective operators are perturbatively expanded in powers of correlation and contain contributions from excitations outside of the multireference valence space. To demonstrate the validity of this method, calculations for dipole moments of several low lying valence states of OH, $OH^+$, and $OH^-$ to first order in the correlations have been performed and compared with configuration interaction calculations.

Keywords

References

  1. Chem. Phys. Lett. v.61 M. G. Sheppard;K. F. Freed;M. F. Herman;D. L. Yeager
  2. J. Chem. Phys. v.75 M. G. Sheppard;K. F. Freed
  3. Chem. Phys. Lett. v.82 M. G. Sheppard;K. F. Freed
  4. Adv. Quantum. Chem. v.10 B. H. Brandow
  5. Rep. Prog. Phys. v.47 I. Lindgren
  6. Phys. Rev. v.A20 B. J. Bartlett;G. D. Purvis Ⅲ
  7. Phys. Rev. v.A29 S. A. Kucharski;Y. S. Lee;G. D. Purvis Ⅲ;R. J. Bartlett
  8. Adv. Chem. Phys. v.14 H. P. Kelly
  9. Phys. Rev. v.152 H. P. Kelly
  10. V. Hurtubise;K. F. Freed
  11. J. Chem. Phys. H. Sun;K. F. Freed
  12. Modern Theoretical Chemistry v.7 K. F. Freed;G. A. Segal(ed.)
  13. Acct. Chem. Res. v.16 K. F. Freed
  14. J. Chem. Phys. v.80 T. Takada;K. F. Freed
  15. J. Chem. Phys. v.80 H. Sun;K. F. Freed
  16. J. Chem. Phys. v.86 X. C. Wang;K. F. Freed
  17. J. Chem. Phys. v.61 S. Chu;M. Yoshimine;B. Liu
  18. J. Chem. Phys. v.47 P. E. Cade;W. M. Huo
  19. J. Chem. Phys. v.61 W. J. Stevens;G. Das;A. C. Wahl;M. Krauss;D. Neumann
  20. J. Chem. Phys. v.64 J. O. Arnold;E. E. Whiting;L. F. Scharbaugh
  21. J. Chem. Phys. v.34 R. J. Fallon;I. Tobias;J. T. Vanderslice
  22. Phys. Rev. v.183 C. F. Bender;E. R. Davidson
  23. J. Chem. Phys. v.87 C. W. Bauschlicher, Jr.;S. R. Langhoff
  24. J. Chem. Phys. v.74 H. Sun;M. G. Sheppard;K. F. Freed
  25. J. Chem. Phys. v.53 T. H. Dunning, Jr.
  26. J. Chem. Phys. v.86 S. R. Langhoff;C. W. Bauschlicher, Jr.;P. R. Taylor
  27. J. Chem. Phys. v.77 S. R. Langoff;E. F. van Dishoeck;R. Wetmore;A. Dalgarno
  28. Chem. Phys. v.112 R. De Vivie;C. M. Marian;S. D. Peyerimhoff
  29. Chem. Phys. Lett. v.122 J. S. Wright;V. Barclay;E. Kruus
  30. Chem. Phys. Lett. v.123 J. J. Novoa;F. Mota
  31. Chem. Phys. Lett. v.136 J. V. Ortiz
  32. Spectra of Diatomic Molecules G. Herzberg
  33. Molecular Spectra and Molecular Structure K. P. Huber;G. Herzberg
  34. Can. J. Phys. v.53 A. J. Merer;D. N. Malm;R. W. Marin;M. Horani;J. Rostas
  35. J. Chem. Phys. v.58 H. Hotop;R. A. Bennett;W. C. Lineberger
  36. J. Chem. Phys. v.60 R. J. Celotta;R. A. Bennett;J. L. Hall
  37. J. Chem. Phys. v.77 F. A. Schulz;R. D. Mead;P. L. Jones;W. C. Lineberger
  38. J. Chem. Phys. v.79 H.-J. Werner;P. Rosmus;E.-A. Reinsch
  39. J. Chem. Phys. v.63 W. Meyer;P. Rosmus
  40. J. Chem. Phys. v.58 E. M. Weinstock;R. N. Zare

Cited by

  1. Multireference space without first solving the configuration interaction problem vol.35, pp.4, 2014, https://doi.org/10.1002/jcc.23502