Abstract
The time correlation functions of concentration fluctuations due to the random forces near the steady state are evaluated for a general two-component nonlinear chemical system by solving the corresponding two dimensional Fokker-Planck equation. The approximate method of solving the Fokker-Planck equation is based on the eigenfunction expansion and the corresponding eigenvalues for both the linear and nonlinear Fokker-Planck operators are obtained near the steady state. The general results are applied to the Lotka model near the oscillatory marginal steady state and the comparison is made between linear and nonlinear cases.