. 25
A 88-25-3 -4

Design of a Discrete Variable Structure Tracking

Controller with Adaptive Feedforward Gains
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Abstract

In this paper conditions are derived, which ensure the existence of a quasi-sliding mode on the
control switching hyperplane in discrete variable structure control systems and also remove the
reaching phase problem observed in continuous-time variable structure systems. In addition, a
discrete variable structure tracking controller which has adaptive properties is devised based on these
results. This controller has useful properties, such as small sensitivity to the variation of plant
parameters and to disturbances and its performing speed is fast compared to that of other adaptive

controliers.
1. Introduction properties of invariance to plant parameters and
disturbances.  With these excellent robustness
Variable structure systems (VSS), widely properties, the theory of VSS has many applic-

studied by numerous Soviet authors, are character-
ized by a discontinuous control action which
changes system structure on reaching a set of
switching hyperplanes. This discontinuous control
law results in the sliding mode, main feature of
VSS. During the sliding mode, the system has
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ations in non-linear systems and plants with
imprecise knowledge of their parameters [3] - [5]
and recently it is applied to the design of a model
reference adaptive control system [6] - [9] by
Young et.al..

However, ideal sliding mode requires infinite
frequency switching in control input but due to
the certain non - idealities, such as delay in control
input, system acquires only quasi-sliding mode
at the expense of chattering problems.

In this paper, the theory of VSS is applied to
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discrete system which has inherent delay in its
feedback control loop. This delay nature of
discrete system is related to the quasi-sliding mode
as in the continuous case with control delay. We
determine the conditions for the existence of the
quasi-sliding mode improving the reaching problem
and design the discrete variable tracking controller
based on these conditions and adaptive control
theory.

II. Discrete Variable Structure Systems

1. System definition

Let the continuous VSS be described by the
controlled plant

X(t) = A _X(t) + b _u(t) (1)

X(t) = [x; (1), x (D] T

Ac =[O0 I, b= 100,517
Ay, gy e Bop

with the control input and the hyperplane which
defines sliding mode
]T

f

= T . =
u(t)= FIX() F = [y, fop

(2)
so(t) = cTX(t) ;e={ci,, cf]T

According to the result given by Itkis [1],
the above VSS can be stabilizable and its quasi-
sliding mode exists when the control input is
sampled by the interval T, i.e.

u@®)y = uwkT) kT<t<(k+DT 3)
provided that
T<(1+a)ln[ (1+a+tK)K!]
(4)

i=

n-1 L
K=[Zlfciz 1%

n-1
_ 2%
a= [Eliaci| 172

This means that the sliding mode is replaced by
the quasi-sliding mode when there is limited delay
in the control input and the resulting system is
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still controllable by the variable structure control
law.

Now, for the system (1), corresponding dis-
crete-time system obtained by sampling its input
and output with the discretization period T is

X((k+1)T) = AX(kT) + bu (kT)

X(kT) = [x; (kT),..., xn(kT)]

5
A=LSFA )T | (g = B(T) ®

b=[" @ (rnbedr

If we define the discrete variable structure
control law and the discrete hyperplane as

u(kT) = -FTX(KT) ;F = [f;,..,f 17 6)

sd(kT) = ¢TX (kT) ;¢ = [cy 0, ¢ 1T @)

n

then we can say that the suggested DVSS may
have quasi-sliding mode and can be controllable
by the variable structure control law if its dis-
cretization period is in the limit described by
eq(4). In what follows, kT is denoted simply by k.

2. Quasi-sliding conditions in DVSS

The sliding conditions in continuous VSS are
given by the following inequalities {11, f[21.
limsc =20
sC>0"

lim sc <0,
sc>0*

(8

It may be interpreted that the representative point
(RP) of the system in the phase space, having once
hit the hyperplane (sc(t)=0), cannot leave a small
neighborhood of the hyperplane. In our DVSS,
we can apply the same physical meaning to the
system (5) so as to derive the quasi-sliding con-
ditions in DVSS.

Consider the discrete hyperplane sd(k) =0 in
the phase space (see Fig.1). The direction vector
of the system trajectory is H = X(k+1)-X(k) and
the following inequalities must be satisfied
between the direction vector of the RP and the
gradient vector of the hyperplane sd=0, according
to our previous discussion.

(grad sd(k) 1T H=[cy,...,c.] [X(k+1)-X(k)]

= sd(k+1) - sd(k) <0 ; sd(k) >

20 ;sd(k) <0
(%



Design of a Discrete Variable Structure Tracking Controller with Adaptive Feedforward Gains 27

Xtk)
*\
\, grad sdik)
sd(k)>O X(k+1)
sd(K)=0
sd{k) <O o Xikel)
H
)
Fig.1. Grad sd(k) and H in phase space.

The above inequalities are identical to the
results obtained by Milosavljevic using ‘heuristic
analogy’ to the continuous case (in eq(8)) [10].
But regarding the stepwise nature of the discrete
system, there are still another possibilities in
DVSS.

Consider the following inequlity.

sd(k+1) sd(k) <O (10)

This condition makes the RP pass the hyper-
plane in a single step -not asymptotically-regardless
of its previous position in the phase space and ina
neiborhood of the hyperplane, condition (10)
converges to conditions (9). This inequality may
provide more efficient way of removing the so-
called “‘reaching-phase problem’ observed in the
continuous case, while this has shortcomings of
causing relative large chattering.

Unfortunately both conditions are not the
necessary and sufficient conditions for the exis-
tence of the quasi-slding mode in our DVSS but
the inequalities (9) are necessary and the condition
(10) is a useful criterion in determining the control
gains.

3. Determining the control gains

We consider the design of DVSS for regulating
the ouput of the system (5). First, we apply the
conditions (9) to the system (5), then we have

cTX(k+1) -cTX(k) (11)
cT(A-DX(k) - TbFTX(k) <0 ;

sd(k+1)-sd(k)

sd(k) >0

=0 ;sd(k) <0
n

where u(k) =-FTX(K) = -Z f, x; (k)
i=1

n
sd(k) = cTX(k) = Zeyx; (k)
i=1

They can be equivalently expressed for each
control gain fi as

h; x; (k) - g f; x;(k) <0 ;sd(k) >0

=20 ;sd(k) <0 (12)
¢T(AD=[hy,..h ] 5 (=1,..,n)
cTo = g

and the resulting conditions for each fi are

fi=f{ >fui ; sd(k)x;(k) >0
<ty ssdlxk) <0 (13)
£, = hife S (=1,...,n)

In order to avoid the complexity of the con-
troller which may be caused by taking two values
of f{and fi', we simplify conditions (13) as follows;

£ = [f; |5 sd@ox) >0 (14)

] =-\fi | ; sd(k)x;(k) <0 ;(i=l,...,n)

where I f; l = ’fui | = I hi/gl
Now, if we follow the same procedure to the
condition (10), we have for each fi

f = ‘ f; | s sd(k)x;(k) >0

(15)
ri=_1 f; ];sd(k)xi(k)<0 :(i=1,...,n)

where l f; I >|foi ‘:Iji/gi
CTA=[j1,...Jn]

Then the appropriate control gains may be
obtained from the two inequalities as the function
of sd, i.e. if the RP is located far apart from the
hyperplane sd=0 then the conditions (15) make it
reach the hyperplane fast and in a neighborhood
of the hyperplane, the conditions (14) make the
RP converge to the hyperplane rather smoothly.
For that purpose, we take the control gains as
follows
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[ 1=t |+ Cfor | - [0 )
(lexp(- |sd(k) | /K)
;(i=1,...,n)

(16)

where K is a constant.

If. Adaptive Discrete Variable Structure
Controller for Tracking Control

In this section we propose the controller for
the plant (5) to track reference input. Since the
state variable X(k) of the plant (5) consists of x;
as a plant output and X,, . .., X, as successive
derivatives of it in continuous-time sense, the
reference input has the form X* = [x*, 0, .. .,0]T.

First, we construct the error system with its
state variable E(k)=X*-X(k)as

E(k+1) = X* - X(k+1)

(17)
=(I-A)X* + AE(k) - bu(k)
and the hyperplane

_.T

=[cy,..., cn] ey ..., en]
The control input has the form
u(k) = F.' E(k) + F*Tx* (19)
However, for this tracking controller, the

control input must have constant feedforward
component in the steady state (E(k) = 0 ). In
continuous-time case, the switching type control
gain for the feedforward term is equivalently
replaced by a constant (or nearly constant) gain
due to its infinite (or very high) switching freque-
ncy [11, [2], [6], [8], [9] but, for discrete-time
case, we cannot expect the same effect with the
switching control gain as in (19) because of its
finite siwtching frequency limited by the sampling
time and the resulting control action in the steady
state is very fluctuating.

Therefore we suggest new control law with
the term of the feedforward control gain which is
adaptively adjusted but not switched.

Consider the floowing control law.

3A EFLBERGE
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u(k) = FT E(k) +pTX* (20)
where EE is normal switching gain matrix and p
is an adjusted gain.

We may think that the Fg E(k) term corre-
sponds to the AE(k) term in eq (17) and the f)TX
term to (I-A)X. If we separate the eq (17), (18)
into these two components as

E(k+1) =[(-A)X*-bpTX*] + [AE (k) - b

FJ E(K)] @n

= E, (k+1) + E_(k+1)

wd(k) =cTE(k)=cTE (k) + cTEL (k)
= sd, (k) + sd (k)

then we can apply the discrete variable structure
control law to the subsystem represented as
EE(K+1) and sdE(k).

fr.= IfEi | ; ad (ke (k) >0

fr,= — I fEi| ; sd (kei (k) <0

‘fEi‘>’fEui ‘ =|hi/g ’ (i=1,..., n)
(cTp) ! [cTA] = [h, ""’hn]/g

(f £ ]

Euil, ..., Eun

(22)
For the subsystem Ex(k+1) and sdx(k), we
apply the adaptive theory and perform the
recursive estimation procedure to the control
gain p.
p(k+1) = [ (p(k), sd_(k), k) (23)
However control laws (22) and (23) cannot be
directly applied to the system because sdg(k)
and sdx(k) are not obtained separately from sd(k).
If the estimated parameter p(K) nearly converges
to its true value (ch)'1 [cT(I-A)], de(k)
approaches to zero and the following equality is
satisfied.

sign [sd(k)} = sign [sdE(k)] (24)

Therefore eq (22) can be replaced by
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i = |fei |5 sde; (0 <o 2%

f =[5 3400 &, (0) <O G=1,..., m)
Alternatively, if the subsystem is already in the

quasi-sliding mode, then sdE(k) approaches to
zero and

sd(k) == sd (k) (26)

is safisfied. Therefore eq (23) can be replaced by

p(k+1) = f(p(k), sd(k), k) @7
The resulting DVSS is shown in Fig.2.
X*
Plant
X(k) g+
X(kel)s AX(k)+ bulk) v

£0k)

[]
sd(k)

Parometer estimator

System block diagram.

Fig.2.

It may appear that eq (24) and eq (26) have
somewhat contradictory assumptions but the
validity of proposed algorithm is proved as follows.

First, we assume that the condition (26) is
violated in any initial state or in ko-th step, then
the algorithm (27) estimates p (kO) which tries
to nullify sd(k0+1) instead of sdx(k0+l).

p(kO)T X* =
Then from eq (21), the sd(k0+1) becomes

sd(k0+1) = ¢ T(1-A)X*-cTbp (kO)TX* +

sdE(k0+1)

= sd (k0+1) - sd(k0) 29)

and from eq (25), which is equivalently expressed
as the condition [sdg(k+1)-sd(k)]sd(k) <0 (it
is evident ifeq (22) is compared with eq (25)), the
following inequality is satisfied.

(o) [cT(1-A)X* + sd (k0)] (28)

(266)

29

sd(k0+2) sd (kO+1) < O (30)

We already know that this inequality means
the existence of the quasi-sliding mode in the
hyperplane sd(k0+1) =0 because the RP is
located in a small neighborhood of sd(kO+1)=0
by the algorithm (27).

Therefore we can reach the following con-
clusions. If the condition (26) is violated, algori-
thm (25) and (27) make sd(k) zero simutaneously,
the one by adjusting control parameters and the
other inducing the quasi-sliding mode.

Once the system enters the quasi-sliding mode,
then E(k) decays and the condition (26) is
satisfied and it again satisfies the condition (24).

Since the estimation algorithm (27) operates
correctly after the condition (26) is satisfied,
the projection algorithm which is relatively slow
but simple and gives some flexibilities against the
variation of the system parameters is preferable.
This fact meets the characteristics of the VSS,
parameter invariance.

Since the reference input has the form [x*, 0....
0], the vector p(k) needs only first element to
be estimated and others are not used in the
algorithm. This aspect informs us that the propsed
algorithm has very high performing speed com-
pared to other adaptive algorithms.

IV. Computer Simulation Results

The proposed tracking controller was adopted
to the plant

X4 (k+1)

Xa (k+l)

0.9979 0.04639||x,(k)

+
-. 09278 0.8584 |ix;(k)| |4.639
and the simulation result for the pulselike reference
input which varies +1, -1 alternatively was shown
in Fig.3 with the control gains

fo, (k) =[.04+(1-.04) (1-exp (- |sd(x)/10] )]

sign (sd(k)e; (k)
fm(k) = [.03+(.2-.03) (1-exp (- | sd(k)/10| )]
sign (sd(k)e, (k))

are obtained form eq (16)
f01=1, fu2=0.03, f02=o'2

where fEl and sz
choosing fu1=0.04,

0.1189 | u(k)
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Fig.3. Pulse response of the system.

and the estimation algorithm
P(k+1) = P(k) + usd(k)

where u is the coefficient which determines
estimation speed and we choose u = 0.2

The parameter of the controller varies in
relatively large amount at the change of reference
input because the relationship between the con-
troller structure and the estimation algorithm is
weak, i.e. the correct estimation is achieved after
the condition (26) is satisfied as previously
disscused. But the estimation mechanism fills

3/ ETLBERGE
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the role of it. In the steady state, it gives a con-
stant feedforward component to the control
input and in the transient, it makes the DVSS
mechanism generate the quasi-sliding mode in
sd(k) with its ‘over-estimated parameter’. There-
fore the resultant output response is satisfactory.

Fig.4 is the response of the system under the
parameter variation caused by 10% random vari-
ation of the discretization period T. Fig.5 is the
response of the system under the output distur-
bance represented in Fig 5 (a). These two figures
show that the proposed DVSS has small sensitivity
to the variation of plant parameters and distur-
bances, which is one of the main features of the
VSS.

1.20

0.80
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C =]
Se
S s
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Fig.4. Step response of the system with para-
meter variation.
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bance.
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V. Conclusions

We applied the theory of variable structure
systems in discrete case. Some conditions were
derived, which ensure the existence of a quasi-
sliding mode in discrete variable structure systems
and improve the speed of reaching the hyperplane.
Though these conditions are not sufficient, they
provide good criterion for designing the discrete
variable controllers. Based on these results and
adaptive control theory, a kind of tracking con-
troller was devised, which properties were demon-
strated by computer simulations. Proposed con-
troller has many useful properties which are the
main features of continuous variable structure
controllers, such as small sensitivity to the vari-
ation of plant parameters and to disturbances, and
its algorithm performing speed is remarkably fast
due to its simplicity compared to other adaptive
controllers.
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