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On a Detection Scheme for Weak Deterministic Signals

in Non-Additive Noise
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Abstract

A parametric detection scheme for deterministic signals is obtained in a generalized observation
model which contains non-additive noise. The model employed in this paper includes several
special cases such as those describing purely-additive noise, multiplicative noise, and signal-
dependent noise and allows the consideration of deterministic and random signals. Locally
optimum detectors for known deterministic signals in the model are derived and analyzed for
performance. It is shown that the locally optimum detectors are interesting generalizations of those
for the purely-additive noise model. Performance of the locally optimum detectors designed for the
generalized observation model is compared to that of other common detectors.

I. Introduction reason for the popularity of the PAN model is

that it is relatively easy to treat analytically and

The purely-additive noise (PAN) model has to derive for it explicit and physically-appealing
been one of the most commonly-used models structures for signal processors in various practical
[e.g., 1,2] in many areas of signal processing. A applications. Among the other reasons for the
. popularity of the PAN model is the fact that the
. e e | g contributions of other (non-additive) processes
IE@R, MBS ER 3 B LBH may be assumed to be negligible in many situ-
(Dept. of Electrical and Elec. Eng., KAIST) ations so that the PAN model usually produces
BSHT [ 1988F 4 A 25H quite acceptable results. However, if the PAN

(1019)



2 19884 98 EFIB@HRGE £ 25% & 9 %

model does not yield an appropriate and
reasonable approximation for the mechanism
generating the observations, then the penalty
which results from using the incorrect model
(the PAN model) may be significant.

Non-additive noise (NAN) models are necessary
in several different types of interesting situations.
For example, multiplicative and signal-dependent
noise terms cannot be ignored in certain com-
munications, acoustics, and image processing
applications [e.g., 3-6]: the effects of system and
channel nonlinearities acting on additive signal
and noise may generate NAN components in
addition to PAN noise components. More
basically as a natural extension of the PAN models
in signal processing theory, it is of intellectual
interest to study more general noisy signal
(observation) models which include the PAN
models as special cases.

In this paper we will concentrate our attention
on the locally optimum (LO) detection of weak
known signals in observations governed by a
generalized noisy signal model which accommo-
dates multiplicative and signal-dependent noise
terms in addition to PAN. LO detectors, which are
optimum in detecting signals in the local case of
weak signals (SNR — 0), have bases in the
generalized Neyman Pearson lemma [7,8] of
statistical hypothesis testing. They have been of
considerable interest because detection of weak
signals is more difficult than detection of signals
which are comparable in strength to the noise
process.

II. A Non-Additive Noise Model

The multiple-input PAN model for observations
X in the signal detection problem can be
described by

thngia‘iij ] =1, 2’.“,1—‘7 i:l,2,"',n (1)

Here L is the number of input channels from
which observations (noisy signals) are taken, i.e.,
L is the array size; n is the size of the sample (a
set of observations) collected at each input
channel,; Qi is the common signal component at
each channel at the i-th sampling instant; 8 is the
signal amplitude; and W-i is the PAN component
in the j-th channel at the i-th sampling instant.
The PAN components W-i is normally taken to be
independent and identically distributed (i.i.d.)

random variables with common probability
density fu;lction (pdf) fw and mean zero and
variance O, with the signal and noise being
statistically independent.

Let us now consider a more flexible model
capable of yielding more complicated but realistic
descriptions in a broader range of situations.
Instead of the purely-additive signal and noise
model of (1), consider the model describing the
observation in, for i=1,2,...,n and j=1,2,...,L, by

X,=a()e,+8(D)S, +r(z)' ¢
[a(T)ei+ﬂ(t)Sl]dei+Wji (2)

The assumptions of our PAN model (1) are
retained and the signal term BQi in (1) has been
more generally broken up into deterministic (ei)
and zero-mean random (Si) components with
respective amplitudes a(7r) and (7). However, we
have now introduced the additional noise com-
ponents N'i‘ These are i.i.d. random variables
independent of the Si’ but they are generally
correlated with W-i_ The signal term (a(T)ei +
B(7)Si) multiplies N; when d=1 to produce an
additional multiplicative noise term generally
correlated with the PAN component Wji- On the
other hand, with d = 0 we get the additional term
7('r)Nji which is a signal-dependent noise term,
since 7 controls the signal strength through a(7)
and B(7). It will be assumed that a(7), §(7) and
() are nondecreasing functions of T near 7 =0
with a{7)=B(7)=Y(7)=0 at v=0 and that d can only
beOorl.

Let the variance of the N;; be O%J and let fN
be the common pdf of the I\}l Finally we will
denote by fyw the common joint pdf of the
(Nji’ W-i), which are iid. bivariate random
variables for i=1,2,...,n and j = 1,2,...,L. In this
paper, we will restrict ourselves only to the case
B(7)=0 and the e; are not all equal to zero.

With the above assumptions, our detection
problem can now be formulated as a statistical
hypothesis testing problem of choosing between
a null hypothesis H:7=0 and an alternative
hypothesis K : 7 > 0 describing the joint pdf

fxl=T I | fwe(n,x,—a(t)e.—7 ()
=1 =1
. [a(T)eu‘dnu)dnu (3>

of the observation matrix X = {in}, where x is
a realization of X.
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II. Locally Optimum Detectors in the
Non-Additive Noise Model

An LO detector has maximum slope for the
detector power function at the origin (SNR=0)
in the class of all detectors which have its size or
false-alarm probability (Pfa); therefore, the power
of an LO detector is guaranteed to be no smaller
than that of other detectors at least for signal
strength 6 in some non-null interval (O,GM) with
BM depending on the detectors, if the pdf of X
and its derivatives are real-valued irtegrable
functions [9]. More specifically, let Da be the

class of all detectors of size a for H versus K and
let Pd(B/D) be the power function of a detector

D. Then an LO detector DLO of size a is a
detector in Da which satisfies.

d’'Ps(01D) _ d’P4(01Dyo)
max = 3¢" 46° (4)

In (4) the parameter v is defined by the following
two equations:

d'PsOID) _ ._ T

Sl 0, =121 (5)
forallDinDaand

iPd(OIDLo)>0 (6)

dg”

In the PAN model, it can be shown [e.g. 9]
that the LO detector test statistic is

TL0+(X)=§911L§I& (th) (7)
where
g ) = — 9 (8)

is usually called the LO nonlinearity. In (7) the
subscript L.O+ represents LO detector in the PAN
model.

1. Reparametrization

To obtain the test statistics of the LO detectors
in the generalized observation model (2), we first
reparametrize the generalized observation model
(2) in the following way.

(1) Whend = 1, let @=a(7) and define a(0)=0.
(2) When d = 0, we first find positive § and
€, and finite, positive p and q such that
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lim &) — g (9)

Ta0t 5TP

limL(qu =1 (10)

For d = 0 we now reparametrize, with A=q/p,
the generalized observation model (2) as follows;

(A) Ifa=21orif 1/2<a<1 and E{N|W}=0,
we define a(6)=8, o(0)=y(r) with 6=a(r).

(B) If4<1/2 or if 1/2<4<1 and E[{N|W}
does not vanish identically, we define
c(0)=6, a(8)=a(8) with 9=y(7).

It is noteworthy that the above reparametrization
does not change the structure of the LO detectors;
it provides us with convenience in deriving the test
statistics of the LO detectors. After the repara-
metrization, we have

X”=a.(0)8,-+C(0)l'd[a(e)ei]dNn+Wﬂ (11)

as our model in this paper. In (11), a(6)=0 if d=1,
and at least one of a(8) and c(f) is 0 if d=0.

2. Locally Optimum Detector Test Statistic

The joint pdf f(x|r) of (3) is now parametrized
in terms of f=a(r) or 8=y(7) according to the
values of d, o and E{N/W!, and we denote this
explicitly by writing the pdf as ¢(x|r). From the
generalized Neyman Pearson lemma [7,8] the LO
detector test statistic for =0 vs. § > 0 is obtained
as the ratio

d¢(xt8) |
dav 6=0

T =550

(12)

where v is the first non-zero derivative and was
defined in (5) and (6). In [11] it is shown that
this yields for the LO detector test statistic for
most cases of interest the result

Ty (X) = 30 3 (£(0) e g (X,) + A (X,0)) (13)

i=1=1

where
9= =62 (X)flf (ii\)I W) (14)
and
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¢’ (0) if d=0

A=y 0)e, if d=1 (15)

The test statistic of (13) is correct for LO
detection in the generalized observation model
when d = 1 (multiplicative noise), and also when
d = 0 (signal-dependent noise) and E{N|W} is not
identically zero. When d=0 and E{N[W}=0, it
can be shown that (13) is still correct if & > 1/2.
When d = 0, E{NIW!=0 and a=1/2, the LO
detector test statistic becomes

3 (o (0) e (X,)+he (X)) (16)

1 =1

TLO (X) =

n
i=

with

(x) — [fw(x) E {N2|W:X}]”

fw (X)

hy

17
When d=0,E{N|W!=0 and & <1/2, we obtain

T, (0= 35 5 hs () (18)

for the LO detector test statistic. A schematic
diagram of the structure for the LO detector using
the test statistic of (13) is shown in Figure 1.

Fig.1. A structure for the locally optimum

detector with the test statistic of (13).

3. Observations and Comments

(a) If d=1 (the multiplicative noise case), the
test statistic always depends on the PAN noise
through the LO characteristic g,, and the
multiplicative noise term also has an effect on the
LO detector test statistic through g,, unless g,
is identically zero. The LO detector test statistic
for d=1 is exactly the same as that which would
have been obtained in the PAN model with g; (x)
replaced by g; (x) + g, (x).

(b) If d=0 and & > 1 or if d=0, & > 1/2 and
E{NIW}=0 (the signal-dependent noise level is
low compared to the PAN noise level), only the
first term in (13) that contains g, under the
summations remains in the test statistic. This
implies that in such circumstances the test
statistic depends only on the known signal term
a('r)ei and that the signal-dependent noise term
7(1')Nji has no effect on the LO detector test
statistic.

(¢) When d=0, A=1 and E{N|W} does not vanish
identically or when d=0, A=1/2 and EIN|W}=0
(the signal-dependent noise is comparable in
strength to the PAN noise), the terms containing
g1 and g, in (13) or those containing g; and hj
in (16) exist in the test statistic.

(d) If d=0 and & < 1/2 or if d=0, &4 <} and
E{N|W} does not vanish identically (the signal-
dependent noise level is high compared to the PAN
noise level), the test statistic contains only g, in
(13) or h; in (17). This implies that under this
condition the known signal term has no effect on
the test statistic; only the dependence of the
two noise processes N and W hasan effect on the
test statistic.

4. Examples of the Locally Optimum Detector
Test Statistics

Let fyw be a bivariate Gaussian pdf with
E{N}=E{W}=0, agv =1, a§=s2 and r being the
correlation coefficient between N and W. In this
case, we obtain when d=1

Tio (0= 3,33 (X,,+ rs (X, 1)) (19)

and when d=0 and A=1 it is

S Sl X, Fes s (X D) (20)

1 521

Teo (X) =

3

When d=0,4=1/2 and =0 we obtain

T (0= 5 3 (2667 eX, 5" (Xi—1))  (21)
as the LO detector test statistic.

In the second terms in (19)-(21), the square-
law characteristic is quite interesting in this
known-signal detection problem. This is because
the square-law characteristic generally arises in
zero-mean random-signal detection in PAN. This
square-law term is a consequence of the
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randomness of the noise N, which can also be
regarded as a random signal component with
strength a(r) if d=1 and y(7) if d=0 in the NAN
model. The fundamental difference, however, is
that while the square-law characteristic in the LO
detector for random-signal detection in the PAN
model and that in (21) is a result of the second
derivative operation on the noise pdf, the square-
law characteristic in (19) and (20) is a con-
sequence of the correlation between the two
noise processes N and W; that is, fw(x) is
multiplied by E{N|W=x}=1sx, differentiated once
and then divided by fw(x) to give g,(x), during
which operation the square term is produced.

2 T

|

|

|

rs=0.1

et t

& rg={ !

< )
ut
2

JOF-X—-~~Ff-=-F -~~~ -

b4
Q

2 |

s =01 rs=-{

S 1 |

1

rs =01 |

|

|

-2 e 1 1
-2 -1 o] 1 2
X

Fig.2. Locally optimum nonlinearities for
bivariate gaussian noise probability density
functions.

Figure 2 shows plots of the LO nonlinearity
gLO(x)=x+a0 (x2-1) for various values of ag which
can be interpreted as rs, ers/6 or 6252/28 with
ei=1, i=1,2,...,n. From Figure 2, the following
observations can be made:

(a) When r > 0 (the two noise processes N and
W are positively correlated), observations with
large absolute values (|X| > 1) are taken to be
more indicative of signal presence in the NAN
model than they would have been in the PAN
model. This effect is more pronounced as the
product rs becomes larger. This is because of the
third term o()! “[a(B)e;] IN;; in the NAN model
(11); under the alternative hypothesis K, this term
makes the absolute value of an observation larger
in the NAN model than in the PAN model,
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because N and W are positively correlated. The
reverse effect is observed for r <0.

(b) On the other hand, observations with small
absolute values (]X| < 1) are weighted more in
favor of the null hypothesis H in the NAN model
than they would have been weighted in the PAN
model, for positively correlated N and W. This
effect is again more pronounced as the product rs
becomes larger. Again, the reason for this is
that under the alternative hypothesis K the third
term in the NAN model (11) tends to make the
absolute value of an observation in the NAN
model larger if r >0 and smaller if r <O than it
would be in the PAN model.

IV. Asymptotic Performance of the Locally
Optimum Detectors

In this section, let us consider the performance
of several detectors. We will particularly consider
the LO+ detector (LO detector in the PAN model,
whose test statistic is (7)), the linear correlator
array (LCA) detector (which is optimum for
detecting a known signal in Gaussian noise in the
PAN model) and the sign correlator array (SCA)
detector (which is optimum for detecting a known
signal in noise with a double-exponential pdf in
the PAN model) as well as the LO detector.

In the comparison of the asymptotic perfor-
mance of two detectors, the asymptotic relative
efficiency (ARE) [9,12] is generally employed.
The ARE of a detector D; with respect to another
detector D, is defined by

ARE,,— lim 2t (22)
tooo Nig

where n, , and n, , are the sample sizes (numbers
of observétions) réquired by the detectors Dy and
D,, respectively, to attain any fixed power for
any specified false-alarm probability when the
signal strength §=8;. If the expected value, its
derivatives and the variance of a detector under
the null hypothesis and those under the alternative
hypothesis are respectively the same for n -> o0
[12], the ARE;,, can be expressed as the ratio
of efficacies Ei,

ARE,,= ? (23)

(1023)



If the results for the efficacies of detectors
[11] are used, we can obtain the AREs of the LO
detector with respect to the LCA, SCA and LO+
detectors operating on observations modeled by
(2). For example, if we take the pdf correspond-
ing to the bivariate t-distribution [13]

_ 1 1
fxv(xy y) = 2”5(1_ ) ) 1,2 [ 1+ k(l_ rz)
) _(K+2)
(B ) (24)
for wa, we have
_ k(k+142kr*s?)
ARELD‘LCA — (k_z) (k+3) (25)
(et 1+2ket ) B (3, %)
ARELa,sCA = 4 (k+3) (26)
and
ARE .o, — 1 + 228, @7)
10,10 + k+1)

where k is a decay parameter of the pdf and
B(x,y) is the beta function. These AREs are shown
in Figure 3. It is assumed that ¢:‘==6A when d=0
and ¢;=1, i=1,2,...,n in (25)-(27).

of course, for k > oo we get from these results
the AREs for the bivariate Gaussian pdf for wa,
which are

ARE,,,c,=1+2r*s? (28)
2. 2
ARELO.SCA: ﬂ%zr_sl (29
and
AR}:—:LO.LM:1‘+"21‘2 Sz (30)

respectively.

It is observed from Equations (25)-(30) that as
the magnitude of the product rs becomes large, the
effect of the non-additive (signal-dependent or
multiplicative) noise on the asymptotic perfor-
mance of a detector also becomes significant. It
is therefore clear that considerable performance
improvements can be obtained by taking signal-
dependent or multiplicative noise into account
when a detector is to be operated under the NAN
model,

1988%F 9 A EFIBE®RE
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Fig.3. ARE:s for bivariate t-distribution.

V. Summary

In this paper a non-additive noise (NAN) model
has been used for problems of detecting signals
from observations corrupted by various types of
noise, as an interesting generalization of the
purely-additive noise (PAN) model which has been
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widely used in many areas of signal processing.
The observation model used in this paper is a
natural generalization of the purely-additive noise
model to accommodate the effects of multi-
plicative or signal-dependent noise in addition to
purely-additive noise. Locally optimum (LO)
detectors which were derived for this non-additive
noise model for detecting known signals were
shown to be generalizations of those for the
purely-additive noise model. Comparisons of
performance of the locally optimum detectors
and other detectors were made. It has been
shown that the locally optimum detectors can
significantly outperform other simpler detectors
such as the linear correlator array (LCA) detector
and the sign correlator array (SCA) detector in
signal-dependent or multiplicative noise.
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