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On Detecting the Best Treatment*

Woo-Chul Kim*

ABSTRACT

We observe independent random variables Y: ~N(6, 1), i= 1,2,---k, and we are inte-
rested in detecting the treatment with the largest 8:, We consider a procedure which infers
émg{g%ﬁef whenever Y(k)ggge(%Yy—l—C. The maximum probability of a false inference is
found, and it is shown that the inference can be made with the two-sample one-sided critical
value for the usual error levels. The result also holds in the case of common unknown

variance.

1. Introduction

Suppose we observe independent Y;, i=1,--- k, where Y, is normally distributed with
mean 6; and variance ¢°, Often, 6, denotes the average treatment effect, and the treat-
ment with the largest 0; is called the best treatment. The treatment yielding the largest
Y; can be called the sample best. The problem investigated in this article is the following
When can we infer the sample best as the true best?

The common variance ¢® may be either known or unknown. In the case of unknown
variance, we assume that an estimator & of ¢ is available so that v4? / ¢® has a chi-square
distribution with » degrees of freedom, independently of Y,, ---, Y,.

Suppose we infer Bi=max6; whenever Y(mgg}?k))(Yi +C, where C= co or cé(c>0)

i (k)

according as o is known or unknown. Then the probability of a false inference is

Py(0 o <max 0;, Yoo = max Y; +C) (1.1)
- % (k) feCk) .
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where 68=(6,, ---, 6x), and the probability of a correct inference is

P, (0o = max 0, Yo Zmax Y;+ C).
- ix o %00

(1.2)
Subject to ensuring that (1.1) =« for all 6, we want to make (1.2) large. o

The above procedure has been considered by Zinger and St-Pierre(1958), Zinger
(1961), Gutmann(1985) and Bofinger(1986). All these works were intended to find
the maximum error probability in (1.1),’but have not been successfulin generality even
for the case of known variance.

The maximum error probability is found in Section 2. It is also shown that the in-
ference can be made with the two-sample one-sided critical value, The sample size
aspect is considered in Section 3. An illustrative example and comparisons with previous
results are provided in Section 4.

Finally, it should be mentioned that the inference 9<k)%r2%3§ 0, differs from an in-
ference 6(k)>r,ria}i<)6,~, The latter type of inference was considered in Gutmann and
Maymin(1987), and Stefansson, Kim and Hsu(1988). Gutmann and Maymin(1987)
has shown that the stronger inference 9(k,>rga}i<)9i is possible with the two-sample two-

stded cricial value,
2. The Error Probability

In the case of known variance, we may assume =1 without loss of generality. Due
to the symmetry of the problem, we may assume 8,=6,--- =8y in finding the maximum
error probability in (1.1).

The following lemma is needed to find the maximum error probability, The proof
is given in the Appendix A.

Lemma 2.1. The error probability is maximized when ( i) there are (k-1) non-best
treatments, ( ii ) the second best treatment 6, , approaches the best 0y, and (iii) some
of O, -+, 6y, approach 6, and the others approach -oco,

The maximum error probability in the case of known variance is given in the next
result.

Theorem 2.1. In the case of known variance, the maximum error probability is

max {rf 07 (y—c) g(y)dy), (2.1)

1=rsk~1
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where ® and ¢ are the cdf and pdf of the standard normal distribution, respectively.
Proof. When 6,>0,,=---20, the error probability is given by

Py(b, <max 8;, Yy Zmax Y;+C)
- % (k) TECk)

k-1
=2 Py(Y;Zmax Y;+C)
=1 - ixj

k— 00

=,'§’1L-

—

=t

& ( y—ﬂ,'—c) ¢(y—0,-)dy

-

-, .
40
.,

It is clear that this error probability approaches

0 (y—c) g(y)dy

as Ok, Ok -+, Bur—0, and Bk-r, ***, B—-00, Thus, the result follows from Lemma
21.

In computing (2.1), the following lemma is useful. Its proof is given in the Appendix
A.
Lemma 2.2. Let A= rf_:(bf (y-¢) ¢ (y)dy, then A,.,-A; changes sign at most once
from + to — as r increases from 1 to (k-1).

The next corollary follows from Theorem 2.1 and Lemma 2.2,
Corollary 2.1. In the case of known variance, the maximum error probability is given
by

J 0(y—c) p()dy=0(—c/v/7) (2.2)
provided
j:my—c)qs(y)dy;2f_:¢2(y—c)¢(y)dy. (2.3)

It was found numerically that (2.3) holds for c=0.8568 or equivalently for @(-c / / 2)
=0.2723. Thus, Corollary 2.1 implies that the inference can be made with the two-
sample one-sided critical value for any pre-specified level a=(.2723.

When the common variance ¢? is unknown, the maximum of the conditional error
probability, given 6% can be found in exactly the same way. Thus the next result follows,
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Theorem 2.2. In the case of common unknown variance, the maximum error proba-
bility is bounded above by

J: max {rf_: O  (y—cu)g (y) dy} dF, (u), (2.4)
1=rsk~-1
where F, is the cdf of /22(v) /v.

To guarantee a pre-specified level @, We find c=c4 by equating (2.4) to be a, We
have computed Ca values for a=0.01, 0.05, 0.10, k=3(1)12, 15, 20, 30, 50 and for v=5
(1)20, 24, 30, 40, 60, 120, 250. It turned out that, except for a==0.10 and v==56,7, the
values of ¢, coincide, up to sixth decimal places, with the two-sample one-sided critical
values, ie,,

Ca/ V2 =tq(¥)
where t,(v) is the upper a-quantile of the t-distribution with v degrees offreedom.

For a=0.10 and v=5,6,7, the values of ¢,/ /2 are given in Table 1. It can be ob-
served that, even in these cases, these values are very close to t,(v). Details of the
computation are given in Appendix B.

These observations indicate that, even in the case of unknown variance, the two-

sample one-sided critical value ca=/§ te(v) can be used at most of practical levels,

Table 1. Values of co /./2 and t,(¥) for @=0.10

k
3 4 5 6 7
14
5 1.481473 1.481897 1.481970 1.481993 1.482000
6 1.442696 1.442864 1.442885 1.442850 1.442891
7 1.416484 1.416555 1.416563 1.416564 1.416564
k
8 9 10 toso(v)
v
5 1.482002 1.482003 1.482004 1.476
6 1.442891 1.442891 1.442891 1.440
1.416564 1.416564 1.416564 1.415

Finally, it should be mentioned that, in the case of known variance, Bofinger(1986)

obtained an upper bound on the maximum error probability. Then, she could obtain a result

similar to Corollary 2.1 through some numerical computations,
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3. The Sample Size Aspect

The probability of a correct inference in(1.2) is analogous to the power in a standard
hypothesis testing. In this section, we consider a method to determine the sample size
to control the probability of a correct inference,

We consider the following one-way balanced model with normal errors €’

Let &* denote the mean squared error with v=k(n-1) degrees of freedom.

Obviously, the results in Section 2 can be applied to this model by taking Yi=/nX;
i=1,---k. We control the probability of a correct inference when the best treatment
is significantly better than the others, ie. 6yy-6y_g=d0 where ¢>0 is specified before
the experiment and 6,=---<0, denote the ordered 6,, ---, 0.

For Oy —O—yy=Ja, the probability of a correct inference is given by

P, (Xt} = max X;, Xpy = max X;+co/+/n)
1=i=k 15[k)

i

0 00y +vm (Bua=01:3)/0—cu) g(x)dy daF, (u .

It is easy to observe that the minimum probability of a correct inference for
By~ O =9e is given by

j‘:_fw O 1 y+y/nd—cu) ¢g(u)dy dF, (u).

For given k, « and ¢>(, the minimum probability of a correct inference(3.1) can
be computed as a function of n, The results for a=0.05, k=3, 6, 10 and §=0.5, 1.0,
1.5 are given in Figure 1 for illustrative purposes. The experimenter specifies the sepa-
ration between the best and the others as G—86x_y=de with a plausible guess for o,
Then, he or she can find the necessary sample size n for desired probability of a correct
inference.
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Figure 1. Sample size and the probability of a correct inference
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4, An Example
As an illustration, consider an example cited in Steel and Torrie(1960), in which the

effects of k=6 inoculation methods for red clover plants were compared in terms of
nitrogen contents. The data are given in Table 2.

Table 2. The effects of inoculation methods

Treatments Nitrogen contents in milligrams
1 194 326 27.0 321 33.0
2 17.7 24.8 279 25.2 24.3
3 17.0 194 9.1 119 15.8
4 207 21.0 20.5 18.8 18.6
5 143 144 11.8 11.6 142
6 173 194 19.1 16.9 20.8

From Table 2, we find sample means and the pooled sample variance as follows:
X X X X X X @
2882 2398 1464 1992 1326 1870 1179

Under the usual one-way model with normal errors, the homogeneity hypothesis is
rejected even at 1%. Then a natural question is whether the treatment 1 yielding the
largest sample mean can be inferred as the best,

The p- value can be found by evaluating the integral(2.4) with c=,/n ( X, —
maxX. Y/ 6=3.15. The p-value in this example is found to be &=0.018. Thus at level

0 018, we can infer that 912maxe,

By comparison, it can be verlfled that Hsu’s(1984) method for simultaneous com-
parisons with the best can not make this last assertion at @=0.018. The reason is that
Hsu’s method is not specifically designed for this type of inference.

It should also be noted that the methods of Stefansson, Kim and Hsu(1988), and
of Gutmann and Maymin(1987) can be used to make an inference 6,>max®; at a=().
05. It can be, however, verified that none of these methods can make such'f'iln assertion
at «=0.018.
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Appendix A: Proofs of Lemmas

By the symmetry, we assume 6,<0,=---=<0, in the sequel. Let Q:(r=12---k-1)
denote the set of parameters where there are exactly r non-best treatments, ie, Q.=
{6:6,=--=6, <0 =--=06,}.

First, note that the error probability in (1.1) is 0 when all 6,’s are equal. Thus, in
finding the maximum error probability, we may assume. r=1.

For 8eQy, the error probability in (1.1) is given by.

P, (max Y;=Y, = max ¥; + ¢),
Tisjsr sl
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which is obviously non-increasing in 6.,— --- =6y Thus, it is maximized as 6.,
=8, decreases to 6. Therefore for r=12,--- k-1, we have

sup Py (max Y;=Y(, = max Y; + ¢ )

BeQ 1sjsr i% (K

= sup P, (max Y;=Y,= max Y;+c)

Uesdr—1  1sjsr i5(k)
= supPy(max Y;=Y,Zmax Y;+c)
Bed _y 1sjsr1 ixCk)

Z sup Py( max Y;=Y(, = max Y;+c)

BeQ, 7 1sjsr-1 %0

where 5;.41 denotes the closure of Q.
Hence the maximum error probability over Q is non-decreasing in r=1,2,---k-1. Thus,

the result ( i ) in Lemma 2.1 follows.
It follows from Lemma 2.1( i ) and the translation invariance that we may assume

6,=---=6,,<6c=0. Let Gy ,(6,-6x,) denotes the error probability in (1.1) for 6,<
"'§6k1< ek:O, i-e-y
Gy-y (01 RIS ok—-l)

= P,( max Yj =Y(k) g max Y,‘f‘ C)
T 1sjsk-1 is(k)

k=1 .o k-1
= j§=:l Lw ’_I;Il O(y—0;—c) d(y—c) g(y—0;) dy .

i%j

Denoting 6,_, by 6, we have from (A.1)

a
5 G-y (04, oy Oa, )

w k-2
- ?gl¢(y—0;—c)¢(y—c)¢(y—0)dy

k-1 o k-2
+ ’%‘,‘ f_m iI;Il P(y—0;—c)g(y—c)

ixj
{g(y—0j—c) p(y—0)—¢(y—0—c) $(y—0;)}dy,
which is non-negative for 6,=---<6, ,=<0<(. Therefore the result (ii ) in Lemma

2.1 follows.
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To prove the result (iii) in lemma 2.1, we need the follwing:
For 1=1,2,--- k-2,

Gy (84, -8, 0, e 0)
o
= (=1=0) f ML o(y=0,—c) 0" (y—c) g(y) dy (A2)
l —_—
+2 I _lfb(y—ﬁ.-—c)a)“ L(y—c) ¢(y=0;) dy,
ixj
and
aae Gk“l (01,‘ M 0[, 0,"" 0)
o
= () e (k1= [ L 0(y—0,~ ) 7 H (y=c) (A3)
- in

¢(y—0,—c) ¢(y)dy
+ 3 7 1 0(y—6,—c) 0 (y—c)
($(y=0;—c) $ly—0,)—$(y—8,—c) $(y—8 ) }dy .

It can be verified from (A.2) and (A.3) that

1 —1—
sup{Gy-y (0, =, 8;,,0,-0):0, -6, - log(kkill)}
=lim -+ lim Gk—l (01,"',0’,0, ,0)
gy>—0c0 f;+-00
and that
sup{Gy—y (8, ==, 8y, 0+, 0) 21 0 S-S 0,, 1og( )<0,<0}

=sup{Gy-1(0,, -+, 04,0, -, 0):10,5---=6,,<0},

r
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Therefore, the result (iii) in Lemma 2.1 follows by applying the same arguments ite-
ratively w.r.t. 4. This completes the proof of Lemma 2.1.

To prove Lemma 2.2, we note that the integration by parts can be applied to get
the following;

A, =r J‘w¢’(y—c)¢(y)dy
= ("o (5) {cO(n)—p(y) }e dy.
Thus we have, after a little algebra,

- 2 o
Ay —A =e +c J'_w¢f(y)(£—§~§:)))—c)(l—q)(y) )O(y)e ™Y dy,

Hence Lemma 2.2 follows from the log-concavity of ®(y) and the TP, property of
D'(y) (see, eg., Lehmann 1986).

Appendix B: Detaiis of Computation

The integration in (2.4) was evaluated by Gauss-Hermite and Gauss-Legendre
quadrature, and the critical value c, was found via the modified regula falsi method
with accuracy up to 107,



