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Abstract

The linearization method as one of the recursive quadratic programming method is applied for the optimal
design of a large-scale structure supported by Pshenichny’s proof of global convergence of the algorithm
and convergence rate estimates. The linearization method transforms all constraints of the design problem
into an equivalent linearized constraint and employs the active-set strategy. This results in substantial
computational savings by reducing the number of state and adjoint equations to be solved at every design
iteration, The illustrative example of plates with beams supported by columns is the typical one of a large-
scale structure to test the capability of the optimization algorithm. The linearization method among many
is shown to give successful optimum solutions with satisfactory convergence criteria. Hopefully, the method
may be applicable to all classes of optimization problems,

INTRODUCTION (constrained optimization problem) developed by
Pshenichny® ? for engineering design optimization,
The linearization method is one of the mathematical There are many optimization algorithms in mat-
programming methods for solving extremal problem hematical programming methods in which each
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Application of Linearization Method for Large-Scale Structure Optimizations

algorithm has merits and demerits. In this respect,
successful optimal design heavily depends on the
choice of optimization algorithm. The strategy
to select an appropriate optimization algorithm
among many is based on accuracy of the result,
rate of convergence, required computing time,
computer storage required, and compatibility with
structural analysis methods, Gradient method as
one of the mathematical programming method
is known to be suitable to a large-scale structure
optimizaton especially when the exact gradients
of the cost and constraint functions are available.
The theoretical and numerical computation of
the design derivatives of those functions, called
design sensitivity analysis, is one of the difficult
parts in structure optimization since most of the
constraints are implicit functions of design variables,

The purpose of this paper is to introduce and
apply the linearization method of Pshenichny
together with design sensitivity analysis for optimal
design of a large-scale structural system. Here
a large-scale structure implies a relatively large
and complex structure on which many design
variables and constraints may be imposed, Pshenichny
has proved convergence of the algorithm, using
an active-set strategy that is essential in large-
scale structure, Even though there are some other
recursive quadratic programming methods® ¥ with
proofs of global convergence, they require computing
derivatives of all constraints of the problem at
every iteration. This is prohibitively expensive
for structural design problems since each design
derivative evaluation requires multiple solutions
of state and adjoint equations.® The linearization
method is shown to be particularly attractive
in utilization of design sensitivity analysis technique
and appears to be powerful for all classes of problems,

OPTIMAL DESIGN PROBLEM AND DESIGN SENSITIVITY
ANALYSIS

To present ideas of the linearization method
as it applies to the large-scale structural system
optimization, a generalized mathematical formulation
of the design problem is considered.

The optimal design problem is defined as follows:

Minimize $,(b, z) (1)
subject to

K(b)z =S(b) (2)
#i(b,2)=0, i=1, 2, -, m (3)

where b is a design variable vector, z is nodal
displacement vector, K(b) is a structural stiffness
matrix (symmetric and positive definite), and
S(b) is an applied load vector, The functions
(b, z) represent constraints(stress, displacement
and others) and #,(b, z) represents cost function
for the design problem.

Design Senstitivity Analysis of Finite Dimensional
Structures

Representing the cost and constraint functions
as ¢ in general the total derivative of % with
respect to b is written as

dy _ 3% 3¢ d
db ~ ab " oz db

(4)

Differentiating both sides of Eq, 2 with respect
to b yields

K (b~ = — 2 (K () 2)+ 252

where~ indicates a variable that is to be held
constant for the process of partial differentiation,
Instead of solving Eq. 5 for dz/db and substituting
the result into Eq. 4 to obtain the desired result,
one may solve an adjoint equation

K(b)A = 2;/;_T (6)

for A to obtain

dp oy @ - .
d:)b = al?*‘ o (A'SB)=A"K(b)z) (7)
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Consider the eigenvalue formulation for natural
frequency described by

K(b)y=tM(b)y (8)

where ¢ is the eigenvalue, M(b) is the positive
definite mass matrix, and y is the normalized

eigenvector of
y™(b)y=1 9)

Here, K(b) and M(b) are presumed to be
differentiable with respect to design. Following
the design sensitivity analysis of a simple(non-
repeated) eigenvalue®, the desired result is

_%A _ —a%—[yT K (b)y]wfgab—[yT M(b)y] (10

Note here that no adjeint equation is necessary.
Design Sensitivity Analysis of Distributed Pa-
rameter Structures

Recently developed design sensitivity analysis
method® for distributed parameter structures such
as beams, plates and shells employs the variational
approach where the infinite dimensional function
spaces of displacements z and designs u are associated.,

The general variational formulation is written
as

a(z,z)=¢ (z), for all zEZ {11

where a(z, z) is the energy bilinear form, ¢(z)
is the load linear form, and Z is the set of kine-
matically admissible displacements, Each stru-
ctural type has its own a(z, Z) and #(Z).

Consider a measure of structural performance
written in integral form as

=L g(z,Vz, V' 2z u)dR (12

where vz and %z represent the first and second
derivatives of displacements z, respectively, and
the function g is continuously differentiable with

respect to its arguments, Following the procedure

of design sensitivity analysis for static response
® the explicit design sensitivity of Eq. 12 becomes

¥ =JagadudQ+0 (A )—a’ (2, A) 13

where primes( - ) denote the explicit design
derivatives. Here the adjoint variables A is obtained
by solving the following adjoint equation

a(/\, 7‘)=~/D [gzi‘}‘gvzvx“}—gvuvzm dQ
for all X €7 14)

Similarly, the eigenvalue design sensitivity may
be obtained as®

U=a’(y,y)—8d’ (y,y) (15)

where the bilinear form a(..) is the same as
occurred in static response and the bilinear form
d(.,.) represents mass effects in vibration (kinetic
energy bilinear form),

LINEARIZATION METHOD OF PSHENICHNY

Together with the basic assumptions, theoretical
and numerical algorithms of the linearization method
are presented without proofs. Pshenichny has
shown that the algorithm converges after a finite
number of iterations for linear problems and that
in the general nonlinear case, the algorithm converges
at a geometric rate and quadratic rate,

General mathematical programming is to find
be R™ to minimize fo(b), with constraints

)

filb)<0, i=1, 2, - m }
fi(b)=0, i=m’, 1, -, m

(16

where f;, i=0, ], --+, m, are continuously differentiable
functions,
Assumptions: Let

F(b)=max{0, fi(b), -, fm(b)!} {17

Note that F(b)= 0 for all beR"
Given ¢=0, define the active constraint set
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Ab,0)=1{i i (b)=F(b)—0,i=1, 2,

(a) Suppose there is N> 0 such that the set
Qv=1{x: Py (b)=Py (b°)} (19
is bounded, where ©’

@y (b)=fo(b) + NF(b).
(b) Suppose gradients of functions fi(b), 1=0,

is an initial design and

1, 2, -~ , m, satisfy Lipschitz conditions in Qn
:i.e., there exists L)0 such that

I (b) =1 (6*) I=L b —b |,
b, b ey 20

where f/=[of, / ab,, -+, of; /aba]T is the design
sensitivity vector and b =(z}b§)”‘

(c) Suppose the problem of quadratic prog-
ramming ; find p€R" to minimize

(fs (b), p)+1/21plP @1
subject to the linearized constraints
(f{ (b), p)+1f (B)=0, i EA(b, §) 22

is solved with any be Qy and there are Lagrange
multipliers w(b), i=A(b, ¢), such that

&(M)ui (b)=N 23)

Theoretical Algorithm: Given 0<{e(1, for the
kth iteration,

(1) Solve the quadratic programming problem
of Egs. 21 and 22 with b=Db¥ and solution p*=p
(b).

(2) Find the smallest integer i such that

By (B4 P)SOB) —grelp IF 2

If this inequality is satisfied with 1=i,, let
ax=2"Y% and b**' =b*+ axp¥.

It is advantageous® to solve the dual of the quadr-
atic programming problem, which has the form

t

¢ (w) =min( (£ (b), p)+1/21p "+
= w(E (), p)+ HE) 29

Equating the derivatives with respect to p of
the right side of Eq. 25 to zero, the minimum
is attained with

p=—fs (b)~ wf{ (b) 26)

€EA(D )

Hence p is uniquely determined by w, i€
A(b, d), substituting Eq. 26 into Eq. 25 yields

)= 15O+ T wf(b) P+
T whi (b) 2

i€A(b,8)

The dual problem is now to maximize ¢(u) with
constraints u;=20, i€ A(b,d). The value of the
maximum of the objective functions in the dual
problem is the minimum of the objective function
of the quadratic programming problem of Eqgs.
21 and 22.

In basic assumptions, it was supposed that the
quadratic programming problem of Eqs. 21 and
22 is solvable with any be Q1x. When one solves
the dual of the quadratic programming problem,
the weak duality theorem” says that if sup d(u)
=oo, then the quadratic programming problem
is insolvable,

Numerical Algorithm: The following algorithm
is intended for solving the problem of minimizing
fo(b) subject to condition of Eq. 16.

Define

F(b)=max{0, f(b), -+, fu (b), [fm (D)], -,
| fm(b)}}

A(b,¢)={i: fi(b)=F(b) -9, i=1, 2, -, m'}

B(b, d)={i:|f,(b)|2F(b)}-d, i=m’'+1, ---, m}

®n(b)=1(b)+NF(b)

Select the initial aproximation b, N, sufficiently
large, 6,0, and 0<&e(1.
Step 1. In the kth iteration, solve the problem of

—-90-



Aadpzge A 1A A15(1988 9) * B J¥E
minimizing =t &, b, dv, b, A) 29
. ik 2 In vector form, the state variables
¢ (u)= —Ilf (b)+2uf_,gb)|| +Eu g ) _
uB( 5) TEal (displacements) are

subject to w20, ie A(bkd),
for 1e B(b*, d).

If the solution u* is such that ¢@(uk)=-oo,
then set b¥'=b* dy,=1/24d%, and Ny,=Ny
and return to step 1. Otherwise, let

Pl — ] (b°) — Tour £ (BY) (29

iEA b‘ 5) UB (b, &)

and u, arbitrary

and go to step 2.
Step 2. Set
b¥" =bk+a, pk
=0}

where ay is chosen equal to L and q, is the

2%
smallest integer for which

Buy (b + 5 7)< Dy (b)) — e | I

Step 3. If

2(Suk  +T[ ) ENS T Tl

iEA A, 8} i€

then let Ny,,=Ng. Otherwise, let

kﬂ Z(ZU . +ZJK|)

o,

Step 4. If 1 v is sufficiently small, terminate,
Otherwise return to Step 1.

NUMERICAL EXAMPLE

Optimal design of a complex structure that
consists of beams and plates supported by columns
as shown in Fig. 1 is considered using the classical
small-deflection theory.

Define Q% Q. and Q4 as domains of plate,
longitudinal beam, and transverse beam conponents,
respectively as shown in Fig. 1. The superscripts
1 and j are also used to identify the design and
state variables defined in the corresponding domains,

The design variables (Fig. 1), in vector form,
are

z=(wv, Y , éu' v, éu’ QK) 30)
where w is the deflection of plate,7(¥) is the deflection
of longitudinal (transverse) beam, g§(§) is the
slope of longitudinal (transverse) beam, and q

is the deflection of column,

p Lx

/

) (¥,

il

Fig.1. Structural System and Design Variables.
The displacements z of Eq.30 satisfy the

kinematic boundary conditions such as same dis-
placements and slopes of plates & beams at the
interfaces, and zero displacements of columns
at the ground supports.

Optimal design problem is formulated as to
minimize the cost function (volume of entire str-
ucture)

=33

11

+2

5 4 — o~
S/ dQ 433 [oFdhdQ
1 i

&.MU‘ -..Mu-

Jot & b dQ, +23 (Al 31)

subject to the following constraints.
Displacement Constraint ;

¥=1/)op Sx—%)wd|—2 <0 (32)
where 2 € 0,2, is a fixed point, §(x) is the dirac

measure in the plane acting at the origin, and
72 is the maximum allowable value,
Stress Constraint on Plate Element:
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=1/ o " (0)MpdQ—0%= 0 83
where M, is the characteristic function defined
on plate element and o¢p? is a given allowable

yield stress and
¢(0)= (Uxx2+0'y?y+32')w2 — Oxx O'yy)l/2 (34)

is Von-Mises yield stress®,

Stress Constraint on Beam Element:

= o3 osMud Q —0%=< 0 {35
where oy, is the bending stress, M, is the characteristic
function defined on beam element, and o5 is
given allowable stress,

Eigenvalue Constraint:

h=E§ =0 (36)
where {=a?* is the computed smallest eigenvalue,
@ is the natural frequency, and &, is the lower
bound.

Design Variable Bounds:

uSus g 37
where the superscripts £ and u denote lower and
upper bounds, respectively.

Results and Discussion;

A finite dimensional optimization method® is
employed for the present problem to match the
accuracy of the finite element structural analysis,
where the non-conforming method for plate bending
is used®. To solve the static and eigenvalue equations,
symbolic factorization technique'® is used to take

advantage of sparsity of the global stiffness and
mass matrices of the structure. The subspace

iteration method"™ is employed for solving the
eigenvalue problem. The design sensitivity analysis
method introduced early in this paper is applied
for the computation of design derivative of the
constraints formulated using the adjint variable
method.

The input data used are:elastic modulus E=3
X107 psi(2.07x10° MPa), Poisson’s ratio v=0.3,
the overall dimension=15 inx15 in {38.1em X 38. 1
em), uniform thickness of plate element t=0.1

in {0.254 cm), uniform height (width) of beam
element h=0.5 in {1.27em) (d=0.15 in <0.38cm)),
cross-sectional area (length) of column element
A=04 In* (258> (/=493 in {12.5em)), equal
spacing of beams=3 n {7.62 cm), uniformly distributed
load f=0.1 1b/in*689.5Pa)», mass density »=0.1
1b/in® {0.0271N/m?®), the
bounds u=0.8u, and u“=1.2u,, respectively, and
allowable bounds z2=0.0006 in <1.524 X10%m),

lower and upper

100

(40)
R—

6 9

s s f as| s es [€ 95
an jan § an] aofas 2o
JU—

91

e
=
(61)
—
(1)

1— {1} 1
L - L — - 11! » 4
4y U U U
(b) Side View

i o Plate Element No.
(i) : Beam Element No.

Fig.2. Finite Element Model of a Plate-Beam Structure.

% =100 psi<0.689 MPa), o%=400 psi <2.76 MPa),
and §,=800(rad / sec)?.

Finite element structural analysis is carried
out with finite element models of Fig. 2 in which
a total of 184 finite elements and 363 degrees
of freedom are used to mode! the structure, including
100 rectangular plate elements, 80 beam elements,
and 4 column elements, Analysis results are checked
by the finite element package program SPAR
and show good agreements up to 3 significant
digits,
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The numerical accuracy of the design sensitivity
terms is critical in the gradient optimization algorithm
for successful optimal design, Hence, it is checked

Table 1. Design Sensitivity Agreements

Censtraint o i A Y S
o

Diaplace-
C
ment

0.4775E-03 - 0.8052E-04 —0.9071E-04 112.7

1] 0.1484E 02 ~0.7100E 00 ~0.6750E 00  95.1
2| 0.5829E 02 -0.5980E 01 —0.6780E 01 113.4
3 0.5263E 02 ~0.5220E 01 —0.5810F 01 111.3
{
5

0.5256E 02 —0.5760E 01 —0.6320E 01 109.7
a1 0.8497E 02 -0.1028E 02 —0.1126E 02 109.5
11| 0.5829E 02 -0.590E 01 --0.6780F 01 1134

Stress 121 0.6780F 02 —0.7870E 01 -0.8630F 01 109.7
on 131 0.5827E 02 —0.6720E 01 ~0.7380E 01 112.8
plate 4] 0.5269E 02 - 0.6240E 01 -0.6830E 01  109.5
element Iy | 0.7658E 02 -0.9360E 01 —0.104E 02 1105

21| 0.5263E 02 —0.5220E 01 —0.5810E 01 111.3
22 | 0.5827E 02 —0.6720E 01 —0.7580E 01 112.8
231 0.5450E 02 —0.66%F 01 —0.7300E 01  109.1
24| 0.5850E 02 - 0.8990E 01 —0.8060F 01 115.3
25 1 0.6155E 02 -0.7740E 01 —0.8500E 01  109.8
31| 0.5256E 02 —0.5760E 01 --0.6320E 01  109.7
32| 0.5269E 02 - 0.6240E 01 --0.6830E 01 109.5
33| 0.5850E 02 --0.6990F 01 -0.8060E 01 115.3
31 04697E 02 —-0.6030E 01 - 0.6340E 01  105.1
35| 0.4621E 02 —0.5880E 01 —0.6770F 01 115.1
411 0.8497E 02 -0.1028E 02 —0.1126E 02 109.5
42/ 0.7658E 02 - 0.9360E 01 ~0.1034E 02 1105
43| 0.6155E 02 —0.7740E 01 -0.8500E 01 109.8
44| 0.4621E 02 —0.5880E 01 -0.6770E 01 1151
45| 0.3975E 02 - 0.5250E 01 —0.5980E 01 113.9
1| 0.2956E 02 - 0.3640E 01 —0.3960E 01  108.8

21 0.1850E 03 -0.2428E 02 —0.2672E 02 110.0
3| 0:1200E 03 - 0.1608E 02 —0.1764E 02 109.7
Stress 41 0.2041E 03 - 0.2552E 02 -0.2792K (02 109.4
on 50 0.3%9E 03 - 0.4444E 02 --0.4872E 02 109.6
beam 11| 0.165E 02 --0.2360E 01 —0.2520E 01 106 .8
element 121 0.6312E 02 --0.7920E 01 —0.8680E 01 109.6

131 0.2192E 62 -0.2400E 01 -0.2640E 01 110.0
14 0.7964E 02 —0.1088E 02 ~0.1192E 02 109.6
15 | 0.1454F 03 —-0.1%0E 02 -0.2140E 02 109.2
0.1242 04 0.2408E 03 0.2199E 03 91.3

Eigenvalue

by comparing the predictions (sensitivity evaluations)
with the actual changes of constraints after design
modification. Table 1 shows the design sensitivity
agreements for 5% uniform changes of all design
variables, where #, is the constraint values at
nitial design, Ay is the actual changes of constraint
values after design modification, &¢ is the predictions,
and o/ A% is the sensitivity agreements, Results
in Table 1 show good agreements of 91-115%
for all constraints considered. This accuracy looks

more than adequate for iterative design.

The gradient projection method, which is known
to be the most powerful one among gradient

Table 2, Optimal Design Results Under
Displacement, Stress, Eigenvalue Constraints

Initial Final ‘ Inirial Final
11,0000 080008 (1 0.1500 0.12000
21 - 0.80009 9 ~ 0.12000
(3 - 0.50010 13 - 0.12000
- 0.80010 ) 0.12001
5 - 0.80010 | Beam i5) 0.12001
i 0.80009 | width g 0.12000
2 0.80009 12 0.12000
K] 0.80009 iy - 0.12000
4 0.80009 - 0.12000
15 0.80009 13 0.1500 0.12000
Bl 0.80010 (1) 0.5000 0.40005
Plare @2 0.80009 2 - 0.43199
thick- 03 0.80009 3 - 0.40005
ness 04 0.80009 ' Beam {41 0.50015
(~0.1) 03 0.80008 | height (5 0.59996
il 0.80010 ) 0.40005
B2 0.80009 12 0.40004
B3 0.80009 - 0.40004
B4 0.80010 1 - 0.40008
33 0.80005 | Column (13 0.5000 0.40986
- 0.80010 (1) 0.4000 0.32004
W - 0.80009 20 - -
wo- 0.80008 (3) - -
. 0.80003 4] 0.4000 0.32004
#31.0000 0.80009

*Quarter of whole design variables due 10 symmetry
methods, and other methods(even non-gradient
methods) have been applied to this problem resulting
1n lots of computing time and failures of convergences,

The solution in Table 2 shows the successful
optimal design obtained by the application of
the linearization method. The cost is reduced
from 41.68 to 32.40, which is 22.3% reduction,
while L -2 norm of the direction vector as a convergence
criteria is reduced from 34.69 to 0,791 x 10~ after

17 iterations., The plate thickness, cross-sectional
area of column, and the beam width tend to
approach the lower bound, while the optimum
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design is obtained by controlling the beam height.
In this case, the outer beams that are close to
the free edges have the characteristics of building
up the beam height, particularly conspicuous around
the center of the beam. Additionally, when the
optimum solution in Table 2 is obtained, the stress
constraints on plate elements 5 and 6, the stress
constraints on beam elements (5) and (45) (from
quarter of entire structure in Fig. 2) become
tight as implied, and they play crucial roles in
determining the optimum distribution of design
variables, Initially, if the beam height is not too
large compared with the plate thickness, different
characteristics of smoother distribution of both
plate thickness and beam height as optimum
design are expected.

CONCLUSIONS

Most of large-scale structure optimization problems
involve many constraints. written implicitly in
terms of design variables, and hence system state
and adjoint equation must be solved in design
sensitivity analysis at every iteration, The linearization
method essentially denotes all coflstraints of the
design problem into an equivalent linearized constraint.
The beauty of the method is in its active set
strategy and fast convergence rate in which substantial
computational savings are achieved by minimizing
the number of state and adjyint equations to
be solved in each design iteration.

The large-scale structure illustrated consists
of the finite dimensional and distributed parameter
structures where the design sensitivity analysis
methods are different. The example problem treated
requires use of adjoint variable design sensitivity
analysis methods, illustrating compatibility of the
linearization method with this approach to structural
system design. The inherent approximation error
caused by using distributed parameter structural

theory can be mitigated by applying the linearization
method. Potential of the linearization method has
been proved to be applicable to a variety of structural
optimization problems.
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