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FORMULATION OF SHELL FINITE ELEMENTS BASED ON A NEW
METHOD OF ELEMENT DECOMPOSITION
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ABSTRACT

A new method of element decomposition is suggested for simple, efficient, and generalized formulation
of shell finite elements. The kernel of the method is to decompose conceptually the actual element into
a translational element and a difference element. The actual element is obtained by combining the two
component elements. The derived element can be classified into three basic types depending on how the
element is decomposed.

A few complementary measures, to remove locking phenomena and thus improve the performance of
the elements, have been studied. They are reduced integration, addition of internal degrees of freedom,
and mixed formulation. A rational method of controlling spurious zero energy modes has also been devised.
Validity and efficiency of the element with or without complementary measures have been examined through
a series of numerical studies,
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1. INTRODUCTION

There have been enormous efforts to find a
good element, accurate, simple and generalized
for shell analysis. As a result, a great number
of shell elements have been developed, and more
continue to be proposed. However, no one particular
element has emerged as uniquely the best element,
An element good for a certain type of problems
may be poor for others. This study is another
effort to find shell elements good for broad range
of shell problems. The main theme of the study
1s the formulation of shell finite elements based
on a new method of element decomposition,

Concept of element decomposition is not new
and has been involved in many other plate and
shell elements (Bazeley et al., 1965, Stolasky
et al., 1984). In the present study, however,

the method of decomposition is far more ge-
neralized with respect to element shape, num-

ber of nodes per element, number of dof. per
node, and most importantly the assumption on tran-

sverse shear strains,

2. NEW METHOD OF ELEMENT DECOMPOSITION

The actual element is termed the total element,
and is decomposed into a translational element
and a difference element. The translational element
is defined completely by the nodal translations,
and the difference element represents the difference
between the actual element and the translational
element. The nodal displacements are decomposed
into the part for the translational element and
the remaining one for the difference element.
The displacements within each element are de-
termined by independent interpolation of the
respective part of the nodal displacements, The
total element is built by superposition of the two
component elements. The decomposition is intended
not only to simplify and systematize the formulation

but also to ensure the rigid body displacements,
One can arrive at different types of elements
depending on how the nodal displacements are
decomposed.

Most of the existing shell elements have five
or six dof. per node. The present method is
valid for both cases, In this paper, however, discussion
1s limited to the formulation based on five d.o.f.
which is far more common. Its extension to
six d.of. formulation is to be presented in a forthcoming
paper.

2.1. Total element
The total element represents the actual disp-
lacement field, and for five d.o.f. case, is defined
by,
A=luvwap|=|50] 1)

in which & =Lu v w ] denotes a vector with translation
components expressed in x, y, and z Cartesian
coordinate system, and @ =| @ B | a vector with
rotations about local x and y axes defined on
the tangent plane,

The nodal displacement of the total element
should be equivalent to the actual nodal displacements.
The element nodal d.of are denoted by A®

Ae=|_A1"'Anl=lr61 61"'6n 6nJ (2)

in which n is the number of nodes in each element.

2.2. Translational element

The translationa! element is defined completely
by nodal translations, The element is denoted
with superscript t.

A'=|5" ¢ (3)

The translations represented by the translational

elemnt should match the actual nodal translations
at each node,

5t =8,
A% =[5Y 0%--0h 0h)=15,0%8n0h(4)
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2.3. Difference element
The difference element represents the difference
between the total element and the translationa)
element. The element is denoted with superscript
d.
At=a—at (5)

The nodal translations of the element are always

Z€ro,
89=0, for i=1,--n (6)

Therefore,
A% =] 51 09---3%601=1 060 g% (7)

3. REPRESENTATION OF DISPLACEMENET FIELD

The nodal d.of. can be decomposed in many
different ways, One may logically think of four
possibilities depending on whether any or all of
the component elements are subject to the Kirchhoff
assumption. One possibility, in which the difference
element satisfies the Kirchhoff assumption and
the translational element does not, is excluded
in the present study because 1t may not allow
rigid body displacement. The other three types
of decomposition are designated as type I, type
I and type [ decompositions, Interpolations of
the displacement field from the nodal displacements
are expressed by the displacement function matrix
T which has the same format for all types of

element decomposition,

3.1. Type T decomposition

The displacement fields are decomposed so
that both the translational and the difference
elements can satisfy the Kirchhoff assumption,
First the nodal rotations of the translational element
are evaluated as a function of surface normal
displacement. And then, the nodal rotations of
the difference element are obtained by gd=6—
0%, The translations within the translational element

are interpolated from nodal translations, and the
Intra-element normal displacement of the difference
element is determined by nodal values of 69

3.1.1. Translational element

The nodal displacements of the translational
element are given by Eqn(4). The translations
are obtained by interpolation of nodal values,

Sx:Z_‘{Nib‘i or 3‘=§N16,=§N|R5‘ (8)

in which N; is the shape function for node i,
and R denotes the (3 3) rotation matrix evaluated
at point under consideration, Displacements expressed
in local coordinates are denoted in italics, such
as u,v, w,and d.One can relate d* to the element

nodal d.of, in the form of

&=L Ae (9
in which
3sznzl L.L.L,| (10

Lk=[!"';u 192 He: 0 Hn0Jfork=1,2,3 11

1x5n

with Hy; =N, [Rkl Ri: Ry ] (12)

Since the translational element, in type I de-
composition, is subject to the Kirchhoff assumption,
the rotation can be expressed in terms of the

surface normal translation,

i

The row vectors Ly x and L,y are obtained

Ls,x]Ae 13
Ly

from
[La.xlz[H;x 0 H;z OH;n 0]
Ly

=J"“j;1 0 ﬂ;z 0 "‘_H_,:m OJ (14)

in which J denotes the Jacobian matrix, and

Haw, e
Hax

and }'_"I .’;k =

H;k=[H3k,I> (15)

HSk.y
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The natural coordinates £, # are either the two
independent area coordinates for a triangular element
or the (-1, +1) range intrinsic coordinates for
a quadrilateral element. Now, the displacements
of the translational element can be written in
terms of the element nodal dof. of the total

element.

€~ Qr‘
rr

™R8
I
»

3.1.2. Difference element

Although the total element is not determined
yet, the nodal contribution of the difference element
can be obtained using the relation

Al=A—A' amn
or in local coordinates,
At=A-a 18)

The nodal translations consists of the contributior.
of the translational element only.
Therefore,

31=08; and 37=0 (19

The nodal rotations of difference element are
derived directly from Eqns, (5) and (13),

o =0, — 8
:[_H/nm 0 _H/nm 0 "'_H,aim 1
_H/ankh 0 ] A° (20)

in which Haq implies H'y evaluated at node

iand lis a (2X2) unit matrix, If one denotes

with underlines the rotations expressed in natural

coordinates such as

Q={9} 5d={ad} 21
B B

then,

g*°=Jg* or *=J'g! ©2)

Therefore, from Eqns. (20) and (22)

6 =Ju &
=L_H;1u)0"' —H/aiu) ‘J(i) —H’:mu)OJAe

@3

where Jo is the Jacobian matrix evaluated at
node i. Now, the nodal rotations of the differen
ce element with respect to natural coordinates can be
expressed in terms of the element nodal d.o.f.

0de=Q Ae (24)
gdvn
9de= . and
0dvn\

_H,:nm Jm —Elzzm 0"“Elsnm 0 7

*H/auzw 0 _H/”"“ Jrzw""—"i,amzx 0 (25)

__"i,:nrn) 0 _Elazzm _'j,’“‘m Ju |

There exists a functional relationship, equivalent
to Egn.(13), between the surface normal disp-
lacements and the rotations of the difference

element.
a

{a }={w‘.’e} (26)
B i ’w?n
Now, the difference element will be constructed
such that ¢ at each node satisfies the nodal value
given by Eqn. (24).The surface normal translation
1® can be defined in terms of generalized coordinates.
w'=p a )

1x3n 3Inxi



Adrzge 18 A 135(1988. 9)

with
P=L1&n 67| and @"=|a, a; --am | (28)

in which P is a vector of polynomial terms selected
from Pascal’s triangle and a is a vector of generalized

coordinates,
8*=A a 9
INxX1l Inx3n  3nxl
with
0 pr ]
o P. &,
5 P. 7.
@ = and A =| - (30
0 Pn
ah P, én
Jed P, 7n

in which P, P, ¢, and p, »q, represent respectively
P.P,e and p, evaluated at node i. Therefore,

a=A"' @%_G g* 81

in which G is a (3nX2n) matrix obtained fror..
A~ by removing the columns corresponding to
zero entries In vector @9, Subsitution of Eqn.
(31) in (27) yields

w'—p G 8=p G Q 4° 32

Since only p in the above equation is a function
of coordinates,

ge = { a? }= { wk }=[px} G Q 4 (33
wls P

The displacement field of the difference element
is constructed by combining Eqns. (19), (32)

and (33).

F F ¥k
ut 0
,Vd 0 ‘J
4°=1w* [ =|p G Q Ae (34)
a? Px G Q
B¢ p, G Q

3.1.3. Total element

The displacement function matrix for the total
element is obtained by addition of Eqns. (16)
and (34).

LI

L2
L:+p G Q@ |A° =T A3y
L.x+pxG Q
L.,+p,G Q

4=4"+4°=

with the displacement function matrix,

T, L.

= |- : 86

5x5n

T, Lsy+p,G Q.

3.2. Type [ decomposition

In type [I decomposition, the translational element
satisfies the Kirchhoff assumption, and therefore,
is identical to that of type I decomposition. The
translations of the difference element are restrained,
e, 89=(, while transverse shear deformations
are included. The rotations are evaluated by
independent interpolation of the nodal values of
a4 and A9, or ¢9. The displacement function
matrix is presented below without derivation due
to limited space. Its detailed derivation is given
elsewhere (Lee, 1986).

T, L,

T, | =L,

T; L, 37
[T‘]Z[Ls,y +J'N Q

T, Lz.y]
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with
le\zln:[N’ 0 N, 0-Nn 0 (38
LO N, 0 N;---0 Np

3.3. Type M decomposition

In type I decomposition, the rotation of the
translational element and the translations of the
difference element are restrained. The translations
of the translational element and the rotations
of the difference element are obtained by independent
interpolation of corresponding nodal values, Thus,
the translations of the translational element are
retained as in the type 1 and [[ decompositions,
while all the translations of the difference element
are suppressed, ie., 69=(. The rotations of the
difference element are equivalent to that of the
total element.

The type [l decomposition leads to an element
similar to wellknown Ahmad’s degenerated shell
element (Ahmad et al,, 1970). In Ahmad’s element,
the nodal rotations are first converted into translations
in global coordinates and then these translations
are interpolated to desired points, e.g., integration
points. This type of interpolation, physically loyal
to the degeneration concepts, prevents rigid body
rotation of a curved element. That is the reason
why the degenerated shell element performs poorly
for the quarter cylinder test case subject to pure
bending (Lee, 1986). It is obvious that the interpolation
of g4 allows rigid body rotations, as does isoparametric
interpolation of translational d.o.f. (Cook, 1981).
Interpolation of ¢ rather than 84 is to maintain
geometric isotropy. The implementation of the

type I element as well as its formulation is simpler
than that of the degenerated shell element. The

displacement matrix is given below,

T.] [L

T.|=| L.

T, L, (39
T, |=J'N Q

)

with
Qo: 00 0 \J(ZJ -+ 0 0
nxsn 2x3 2X3  2X3 gx3

00 0 O -0 I

4. STRAIN-DISPLACEMENT RELATIONSHIP

The displacement field within an element has
been related to the nodal displacements by dis-
placement function matrix. Differentiation of the
matrix yields the strain-nodal displacement rela-
tionship which is directly involved in the stiffness
matrix evaluation,

In a situation where the transverse shear s-
trains are zero or constant through the thick-
ness, the displacement field can be represented

in terms of the midsurface translations and ro-

tations.
u’ u 10 a
vop=1v '%té‘ 01 * ’
w’ w 00 8
T, T‘_I]
=T —%t{ T, IAE 1)
T, 0 1]

where [ 4"v” w’ [represents the translations of a point
on the surface a distance }3(tf) away from the

midsurface, whereas | 4 v w/| are the translations

on the midsurface. Thus, one can establish a

general form of the strain-nodal displacement

relationship as follows:

€x
i B"—-1/2t¢B°
B e
€ Yy B A° =B A® @2
V52
712

in which the strain components are defined in
local coordinates, and
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Tl,x Tox
B™ = T,y B® = T,y
3xsn 3x5n
Tl.y+Tz.x , Tyt Tsx
and sz:n=|iT3,xj| _,:T4] 43
Ta.y Ts

5. ELEMENT STIFFNESS MATRIX

Once the strain-displacement relationship 1Is
established, the stiffness matrix can be evaluated
directly using following standard equation of
displacement finite element formulation:

ke=/,B"D B4V @4

in which ke is the element stiffness matrix, and
D,the (5X%5) stress-strain matrix. In association
with Eqn.(42), the matrix D is partitioned as

D~=|D” D¢ {45

5%x5 3Ix3 3Ix2
DSIJ DS
2x3 2x2
in which D and D® are symmetric, and D=
(D)7, Substituting Eqns, (43) and (45) into

Eqn. (44), one obtains

ke=f[3’" —1/2t¢B° ]T[D" Des J

B* Ds> D¢
[E e s
BS

The integration in the thickness direction can
be performed explicitly. And integration of & d¢
yields zero. For isotropic or stratified anisotropic
matrials, DP=(), and the stiffness matrix equation
can be simplified further,

ke=t /4 (B"TD°B" 4 14t B DP B 4 BST DS BY)
x| J| dA un

If the material is isotropic,

E 1v 0 1
D":W v1 0 J
00 (1—v)/2
Do—. E 10 4g)
2k (1-+v) 01
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in which E is the Young’s modulus, and v is
the Poisson’s ratio. The constant k is a factor
to compensate the strain energy for transverse
shear displacement approximation,

6. IMPROVEMENT OF THE FORMULATION

According to the numerical study (Fig.1-Fig.
4) presented in the next section, the greatest
trouble with the newly formulated elements, similarly
to the degenerated shell element, is the transverse
shear locking. These elements, like many other
shell elements with inclusion of transverse shear
deformation, show unacceptably slow convergence
under thin shell situation. A few complementary
measures to alleviate the shear locking have been
examined as described in this section.

6.1. Reduced integration

Reduced integration (with 2x2 rule) improves
remarkably the convergence of the degenerated
shell element of quadrilateral shape (Zienkiewicz
et al, 1971). Similar results are obtained in the
case of the type [l element as well, However,
distorsion of element shape diminishes the effec-
tiveness of reduced integration, and thus, triangular
or severely distorted elements cannot take advantage
of reduced integration. Collapsed quadrilateral
elements perform no better than triangular elements,
For 6-node triangular elements, a 3-point integration,
as opposed to 6-or 7-point rules, may be regarded
as a reduced scheme,

6.2. Addition of nodeless d.o.f.

Tsach (1981) observed that an element does
not lock when the interpolated shear strain function
contains more variables than the number of equations
obtained when equating the shear strains to zero.
Therefore, one can avoid locking either by increasing
the number of variables or by reducing the number
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of equations. Reduced integration is equivalent
to reducing the number of equations. One may
increase the number of variables simply by adding
nodeless d.of. Cook (1972) advocated the use
of a bubble mode in eight-noded plate elements,
Takemoto and Cook (1973) studied analogous
treatment of the degenerated shell element. Choi
(1986) proposed addition of nonconforming modes
to the degenerate shell element of quadrilateral
shape. Analogous nonconforming modes for triangular
elements can easily be derived (Lee, 1988).

In this study, addition of bubble and nonconforming
modes has been examined chiefly for triangular
elements with or without reduced integration,
These modes have been applied only to translational
d.of. Fig.2 shows convergence test results for
the pinched thin cylinder case, which is highly
locking sensitive, Addition of nonconforming and
bubble modes brings remarkable improvement
when full order integration is applied. But equivalent
improvement can be achieved by use of the a
bubble mode alone together with reduced integration.
This test case fails due to spurious modes when
both nonconforming and bubble modes are simul-
taneously applieg In combination with reduced
integration,

6.3. Mixed formulation

Lee and Pian (1978) demonstrated the imp-
rovement of plate and shell elements by the mixed
formulation based on the Hellinger-Reissner principle.
A mixed model can be established by applying
the principle to the type M decomposition(Lee,
1988). The improvement by the mixed model
is equivalent to that of reduced integration, Mixed
model requires much more computational cost.
But, this alternative formulation may be a good
substitute for reduced integration if it should be
avoided.

6.4. Control of zero-energy modes

According to the numerical tests with the type
[l element, addition of a bubble mode in combination
with reduced integration seems to be the most
effective and efficient measure to relieve the
shear locking. However, the element suffers from
spurious modes for some cases with minimum
boundary constraints, e.g., four-corner-supported
square plate case. Such cases are not common
in practical situation, but critical enough to invalidate
the generality of the element. Therefore, spurious
modes should be controlled even in such extreme
cases,

In an attempt to remove spurious modes, Kavanagh
and Key (1972) formed the element stiffness
matix by the sum

K=eaKpn + ( 1 ‘"G)Kred (49)

where K and Krea Tepresent stiffness matrices
respectively by full and reduced integration, and
is better than selective reduced integration, because
its precedure is simpler and it does not destroy
geometric isotropy.

Cook(1972) and Takemoto and Cook (1973)
suggested multiplying ke by (1-e) prior to con-
densation of the nodeless d.o.f., where e is a small
number and k. represents the diagonal entries
of kee, the part associated with the nodeless
d.of. in the uncondensed element stiffness matrix

k/ =[ krr kre ] (50)
ker kee

a has a value between zero and one. The scheme

Cook (1972) reported that the most suitable
value of e is 0.003. That is not true, at least
for the shell elements examined in this study
(Lee, 1988). The dilemma in the above two schemes
is that too small & or e value cannot control spurious
modes sufficiently, while an excessive value induces
locking. Unfortunately, the best « or e value depends
on the thickness and the shape of the shell, and
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cannot be determined uniquely.

This study suggests a more consistent method
of controlling spurious modes. That is to apply
full order integration to kee and reduce integration
to the rest part of the uncondensed element stiffness
matrix k',

Application of the method slightly retards the
convergence rate, but secures the control of spurious
modes. The method does not rely on artificial
numbers such as a« or e, and therefore, does not
restrict the generality of the element,

7. NUMERICAL STUDY

Effectiveness and validity of the present for-
mulation have been examined through extensive
numerical tests. The formulation is also viewed
in comparison with the popular =generated shell

element, The effects and limitations of various
complementray devices are numerically demon-

strated.

7.1. Rigid body mode test

Existence of the rigid body modes can be discerned
either by examining the deformation of the element
under rigid body nodal displacements, or by examining
the eigenvalues of the element stiffness matrix.
Both methods are employed in the present study.
The type T and II elements seem to satisfy
the requirement for all cases, while reduced integration
is required for the type [I element to secure
the 6 rigid body modes. On the other hand, the
Ahmad’s degenerated shell element even with
reduced integration devoids rigid body modes,
and cannot represent rigid body rotations when
the curvature of the element is significantly large.
The deficiency of the rigid body modes seems
to be the main source of locking in this element,

7.2. Examination of zero energy modes
Rigid body modes are a kind of zero energy

modes necessary for convergence. But there are
zero energy modes of another kind. They are
spurious modes which are unnecessary or harmful,

Distinction between spurious zero energy modes
andrigidbodymod&scanbemadebydoseexanﬁnation
of eigenvectors associated with zero eigenvalues
of the element stiffness matrix. This is usually
achieved by graphical visualization of those eigen-
vectors, which shows that the type I element
with a bubble mode suffers from spurious modes
and that they can be properly controlled by remedies
mentioned in the previous section.

Examination of the number of zero eignvalues
suggests that each complementary device is ac-
companied by zero energy modes, Thus, addition
of more complementary devices implies more
spurious modes, Simultaneous application of bubble
and nonconforming modes together with reduced
integration induces too many zero energy modes
to control. But, in general, the method of spurious
mode control suggested in the present study turned
out to be effective in suppressing the most of
the spurious modes,

7.3. Geometric isotropy test

Geometric isotropy of an element can also be
examined by the eigenvalues of the element stiffness
matrix, An element is regarded as satisfying geometric
isotropy, if the eigenvalues are not altered by
rotation of the element. It has been found that
the type I, II and I elements as well as the
degenerated shell element retain the geometric
isotropy, and that most of the complementary
devices do not destroy the condition, However,
this is not true for the following two complementary
measures:

1) selective reduced integration

2) mixed formulation with different number
of terms in the assumed normal strain and in
the shear strains,

-75-
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The geometric isotropy is violated by the above
two methods. Therefore, they are undesirable,
if not rejectable.

7.4. Patch tests
Patch test is commonly used to examine the
constant strain state of an element which is the
most important requirement for convergence to
the correct solution(Cook, 1981, Zienkiewicz, 1977).
The following four cases have been used in the
patch tests in the present study.
case [ :cantilever plate subjected to uniform
tensile load at the free end.
case [| :cantilever plate subjected to uniformly
distributed moment at the free end.

case [l .fixed free quarter cylinder subjected
to uniformly distributed moment at
the free end.

case [V :sphere under uniform pressure,

The type I, 1 and Il elements pass the test
for case I and [I, and pass infinitesimally for
case [ and IV. A curved shell element gives
correct convergence as long as it passes the patch
test at least in infinitesimal sense(Zienkiewicz,
1971). Therefore, the present formulation is considered
to fulfill the patch test. On the other hand, the
degenerated element fails the test for case [[.
This may be the reason why this element shows
poor convergence for curved shells with dominant
bending actions{Lee, 1988).

7.5. Convergence tests

The convergence behavior of the newly develop
elements and the degenerated shell element have
been investigated using the following two test
cases:

case [ :cylindrical shell roof test case.

case I :thin pinched cylinder test case.

These two cases are widely uses as bench mark
problems for shell elements. Detailed descriptions

about the problems are given elsewhere(Cook,
1981), and avoided here due to space limitation.

The convergence pattern of the new elements
and that of the conventional degenerated shell
element are compared in Fig.1and Fig.2. It should
be noted that the degenerated shell element of
quadrilateral shape gives convergence to the value
approximately 7 % smaller than the correct solution
for case [I, while the new elements show correct
convergence. This locking phenomena of the
degenerated shell element can be related to the
fact that the element fails the patch test for
the case of constant bending state and devoids
rigid body modes when the element has significant
curvature, Other numerical tests revealed that
this tendency is conspicuous when the curvature
of the structure is significant and the bending
action is dorminant. This difficulty has been overcome
by the new method of element decomposition
which enables constant bending state and assures
the required rigid body modes,

Covergence with various complementary devices
are compared in Fig.3and Fig4. Reduced integration
is quite effective for quardrilateral shaped elements,
but not for triangular ones, Elements with triangular
shape show noticeably slower convergence than
quadrilateral elements, The convergence of triangular
elements are almost unacceptably slow especially
for case [|. Reduced integration alone is not sufficient
for this case. Therefore, addition of bubble or
nonconforming modes is essentially requirer for
tnangular element to secure satisfz “tory convergence
speed.

8. CONCLUSIONS

A generalized and systematic procedure of shell
element formulation has been established on the
basis of new method of element decomposition.

Three types of elements, designated as types
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I, I and I have been derived. The behavior
of the type [l element has been closely examined
through numerical tests, The element has properties
similar to Armad’s degenerate shell element, but
shows better performance than the latter for standard
benchmark problems, Reduce integration improves
remarkably the performance of the type [l element
of quadrilateral shape. But the element of triangular
or disorted quadnlateral shape cannot take advantage
of reduce integration and suffers from shear locking
under thin shell situation. Combined application
of reduced integration and a bubble mode is highly
effective in relieving the locking phenomenon,
but leads to failure for some cases due to spurious
zero energy modes. A new method of controlling
the spurious modes has been suggested in this
study. The method does not use any artificial
numbers such as e or &, and thus provides consistent
control of spurious modes so that the generality
of the element can be maintained.
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