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Abstract

An axially marching numerical method is developed for the simulation of the internal waves

produced by translation of a submersed vehicle in a density-stratified ocean. The method provides

for the direct solution of the primitive variables [v, p, p] for the nonlinear and steady state three-

dimensional Euler's equation with a non-constant density term in the vehicle-fixed cartesian

co-ordinate system.

By utilizing a known potential flow around the vehicle for an estimate of the axial velocity

gradient, the present parabolic algorithm allows local upstreamwise disturbances and axial velocity

variation.
Nomenclature

S,(x,y,z)  Foreing function in the Poisson type
equation for the pressure

H . Vertical size of the computational domain

B : Lateral size of the computational
domain

D ! Maximum diameter of the vehicle

L : Overall length of the vehicle

N . The Brunt Viigilds frequency defined
by Eq. 2 for the linear profile of density

F, . The densimetric Froude number defin-
ed by Eq. 1 for the linear profile of
density

i, . Integers to indicate the location of the
each cells in z,y and =z direction,
respectively

iny Jn . Number of cells in y and 2z direction

Cy, C,» : Phase velocity of the internal waves

in lateral and vertical direction, used

to specify a radiation condition
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. Spatial mesh sizes in z,y, and

: Current step of the iteration

. Gravitational acceleration

z di-

rection, respectively

: =4z in nondimensional term

: Nondimensional term

: Vertical position marker

1 =F(x,y,z)—Fy(z), Eulerian field of

vertical displacement of the water
particles
Velocity components cbtained from

potential flow calculation

: Vehicle-fixed co-ordinate system de-

fined in Fig. 1

. Sensor-fixed co-ordinate system

: Instantaneous velocity components in

z,y, and z direction, respectively

: Instantaneous fluid density

: Undisturbed fluid density at the origin

of the co-ordinate system

: Instantaneous pressure

: Undisturbded upstream magnitude of
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the variable f, f=u,v,w,p and p

f . Perturbations of the variable f, f=u,
v,w,p and p

(zp. ¥p, z5) - Position of the wave probe

(%,3,2) : Displacement of a fluid particle initially
positioned at (x,, 5, 25)

Nz, y.2) Zi—??ﬁ—%, Divergence of two
dimensional velocity vector (v, w)
(Crossstream divergence), or axial
velocity gradient

2,,(x,v,2)  Magnitude of 2(y,z) obtained from

potential flow calculation

Introduction

The objective is to simulate three-dimensional
internal waves generated by a steadily translating
submerged vehicle through a density-stratified fluid
in which the undisturbed upstream density is a con-
tinucus function of depth only.

In order to minimize computer storage requirements
we needed to develop a numerical scheme which will,
in effect, reduce the full three-dimensional (in space)
steady state problem to a two-dimensional unsteady
problem. This is accomplished by conceptually thin-
king of the z-axis as being replaced by the time
axis. Thus the first step is to choose an axially
marching scheme requiring that the induced flow is
fully developed to a steady state.

Wessel{1] and Young and Hirt’2> formulated a
time-dependent two-dimensional Euler's equation for
internal wave development due to an initial wake-
collapse by using a strong conservative system of
primitive variables as in the “MAC” method origin-
ated by Harlow and Welch(3] and further improved
by Nicols and Hirt(4], Chan and Street(5], Miyata
This series of methods had

several desirable features;

and Nishimural6], etc.

1) strong conservative character

9) being stable in the incompressible inviscid fluid

3) easy satisfaction of the free surface boundary
condition and

4) an explicit algorithm for the velocity. These

features are shared by the present algorithm
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Although a steady three-dimensional flow and a
unsteady two-dimensional one have several mathe-
matical features in common, we have a difficulty in
developing a marching procedure; the axial momentum
equation and the cross-stream momemtum equations
must be uncoupled in a marching configuration and
consequently the three-dimensional continuity is diffi-
cult to satisfy, in general. That's why the axially
marching scheme has been used for the special case
where the axial velocity perturbation is small.

Since neglecting the axial velocity perturbation in
a marching procedure gives an identical model to a
time dependent two-dimensional problem(in an invi-
scid fluid), previous numerical studies on the internal
wave mechanism used this approximation with diffe-
rent algorithms; Lewellen et al.[7]) and Piacsek and
Roberts[8] solved steady state three-dimensional inter-
nal waves by an axially marching scheme with
assumption of no axial velocity perturbation.

This paper handles the axial velocity by a special
treatment of the continuity equation, i.e., considering
the axial velocity gradient, 2(y,z), as a source, a
pressure field in a cross-stream section is determined
implicitly such that the corresponding velocity field
in a cross-stream section satisfies the mass conserva-
tion with the existence of sources, 2.

The point is that £ is assumed to be known from
potential theory. Questions may be raised about this
matching of the potential theory to the present inho-
mogeneous fluid problem, since the potential flow
has no density effect. The explanation is that the
buoyancy effect due to the density perturbation only
acts on the cross-stream velocities, not on the axial
velocity.

The only influences of the density perturbation on
the axial velocity would be an indirect component
resulting from satisfying the continuity equation.
 Therefore an axial velocity gradient, 2,,, obtained
from the potential theory can be a reasonable estimate
of the real Q. In the far field aft the vehicle, the
potential flow converges to the undisturbed flow hence
the axial velocity gradient vanishes and also the
continuity equation becomes two-dimensional.

This implies that the present algorithm is based on
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the fact that, regardless of a substantial change of
the axial velocity near the body, the vehicle-induced
internal wave field itself has negligible axial compo-
nent compared to cross-stream velocities. This fact has
been proved by analytical investigators by obtaining
small envelop angles in the wave pattern aft the
body10, 11,12,

Mathematical Formulation

An useful parameter for characterizing the present
problem is the densimetric Froude number, F,. We

define this non-dimensional number as

. 2mug
F,= ND oY)
Where u, is the speed of the vehicle, D its maxi-
mum diameter and N is the Brunt Viisilds frequency

defined by

Ni= £ O @

For the case of two uniform layers seperated by a
thin transition layer, the maximum value of N would
be used to define the densimetric Froude number.

To handle the axial velocity near the body, which
affects the far field wave, the axial velocity gradient
2 in the potential flow has to be monitored in the
whole domain until the potential disturbance due to
the body displacement has decresed to a negligible
amount.

The matching is reasonable provided that the near
field potential flow dominates in the near domain
and the perturbed flow due to the cumulative effeet
of the perturbed density term dominates in the far
domain. Euler's system of equations may be a good
model for the simulation of the far field internal
wave flow due to the presence of non-uniform den-
sity. But, the solution of this primitive variable system
requires a lot of special effort to treat the irregular
body boundaries. Thus a simple way to get rid of
this difficulty was a “slender body approximation”.
It is, however, easily seen that the full continuity
equation near the body was not satisfied. Since this
simple boundary treatment may cause a serious over-
estimation of far field internal waves, the accurate

model for the vehicle in the near domain is crucial
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Therefore,

the present method of matching procedure is designed

for good estimates of the far-field wave.

to specify an exact vehicle boundary condition espe-
cially for a non-slender body.

To reduce the dimensionality of the problem, rest-
rict attention to steady (in time) disturbances relative
to a co-ordinate system fixed in the vehicle, i.e.,
“trapped” internal wave modes with phase velocities
equal to the forward speed of the vehicle. The vehicle
is considered to be fixed within a control volume
and encounters an imposed flow with an upstream
undisturbed velocity, #,, equal to the preseribed for-
ward speed of the vehicle.

A right-handed cartesian co-ordinate system is used
with the origin fixed in the center of the near dom-
ain, (see Fig. 1) the z-axis lies along the longitud-
inal axis of the control volume and is positive in the
down stream direction, the z-axis is along the ver-
tical and oppositely directed to gravity, and the y-axis
is directed laterally across the stream to produce a
righthanded co-ordinate system.

Keeping the nonlinear inertial terms in steady
state three-dimensional Euler’s equation, the indepen-
dent variables (z,y,z) are to be transformed to
(#ot, y, 2), i.e., transform the body-fixed frame into
the tank-fixed system of reference(or sensor-fixed
reference) to lead to a time dependent two-dimen-

sional system of equations.

- Uear  Domzin e

far DJomain—»

Fig. 1 Co-ordinate system for vehicle placed in
the fluid domain

The system of equations are reduced to
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<1+u,a)—_+v.g& +w§f’_=

dv
‘37‘*' —z——a;.,(t ¥z &)

where #,, and 2,, are obtained from the potential

theory and from the relation

— avﬁo aw}a — aﬂ[m
Rpo= Jy + 5 3t ey

where v,,, w,, and #,, are the disturbed velocity
components due to the presence of the body obtained
from source distribution method.

The displacement of a fluid particle at time ¢ from
its undisturbed position can be calculated by particle
tracing. However, the present objective is the simu-
lation of wave probe measurements which are diffe-
rent from the Lagrangian particle trace. (Of course
both were very close throughout the research.) The
kinematic condition for the deformation of the hori-
zontal planes of constant density is

BE = )
where ‘F’ denotes the vertical position marker which,
in turn, becomes

oF oF

(H-“po) + —5—+ 5z 0 6)
and whose initial condition at the undisturbed upst-
ream is

Fo(z)=z2 (7

As a limiting case, if the initial density stratifica-

tion is linear given by the relation

oo(2)=~N%, z/g ®
in dimensional terms or
oo(2)=—N?Dz/g 9

in nondimensional term, where g, actually means
po—pom. Then by comparing Eq. 7 and 9, the relation
F=—rg/(N*D) 10)
is obtained. Thus for this limiting case, by calcula-
ting the Eulerian density field the Eulerian field of
the vertical displacement of the particle, 7(y,z), is
obtained by the above Eq. 10, and the relation
7(t, 3, 2)=F(t, y, 2)—Fo(z) (1D
The far upstream boundary condition (initial con-
dition), #o, vg, wo and P, are chosen to be zero if
the initial z is chosen to be a negative infinity.

The sommerfeld radiation condition
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g{ +C- L af =0 a2)

was used for the artificial boundaries of the rectan-
gular computational domain. ‘Cy denotes the phase
is used

‘4’ is used for the boundary

velocity in the horizontal direction and ‘f’
to denote v,w and p.
of positive y and
.

Similarly, for the upper and lower boundaries,

‘—’ is for the boundary of negative

af +c, 2L af (13)

Where C. denotes the phase velocity in the vertical
direction. Cy and C,

assuming the normal component of internal wave

are chosen to be constants

celerity at each boundary is not a function of y or =,
For the estimate of Cs and C,, numerical results
of the simplified model for the restricted channel
boundary are utilized.

By adding the differentiation of the y-momentum
equation (Eq. 3) with respect to y to the differen-
tiation of the z-momentum equation (Eq. 3) with

respect to z, the Poisson type equation for pressure

2 D o 0w 9 Dt
i e e N =
v a . 2 ﬂ_, afO
3 Du, ( at, T )(g) ( oz o0z )
(14

is obtained. This is the governing equation for the
pressure which is to be solved iteratively with the

Neumann type boundary condition defined in Eq. 3

Numerical Algorithm

The main procedure of the method is to obtain
the (y,2) distribution of the dependent variables at
time step 7 and then use this information to move
to the time step n+1. The fundamental assumption
in thinking of the z-axis as being replaced by a
time axis, is that perturbations propagate only forward
in time and downstream, i.e., the results obtained at
xz=x" do not change the values at x=z*"! but do
affect the values at z=z"*!, For convenience we call
this basic scheme an “axially marching” method.

This procedure is particularly appropriate to our

application since the steady internal wave field has
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/
S,
Fig. 2 3-Dimensionally staggered grid system

negligible up-streamward disturbances due to a domi-
nant axial-advection in the system of equation, except
near the body.

In order 1o consider an axial velocity perturbation,
which is not negligible near the vehicle, the slen-
derness assumption, 2=0, is removed in this paper.

Every grid in y—z plane can act as a numerical
source cell which has non-zero divergence, 2,,. This
new concept is possible since the known potential
flow determines the strengths of each numerical
source cells in the y—z plane at every step in time.
This arrangement, actually handles the effect of the
axial velocity component.

lzn—él

Pl at the position shown in Fig. 2 has to be

obtained by the potential theory to calculate ~%2"—°~
which, in turn, determines 2.

This 2,, i3 used to dertermine the forcing function
of the pressure, S,, as if 2,, is the strength of the
sources distributed over the y—=z plane. For the fine
meshes, the relation,

tep,
ot

was reasonable but for the coarse meshes the direct

Qp,(t, 3y, 2)=— (15)

caleulation

.
OVpo

Q2p5(t, 3, 2) = (16)

dy 0z
is an alternative method, where the subscript ‘po’
denotes the potential flow. The latter was proved to
be more favorable for the large cells and for the
very displaced body case,

The computational fluid domain is divided by three
types of cells: fluid cell, boundary cell and vehicle

cell which are flagged by letters F,B and V,

KEGEMEB L 5% 2% 1088F 6H

respectively.

The 3-dimensional fluid domain is divided into two
regions, i.e., a near domain and a farfield domain as
shown in Fig. 1. The axial grid size 4z (or 4¢), in
cases, has different values between near and far
domain; Since the stability of the scheme depends
on the stream speed, 4z for the whole domain must
be chosen to depend on the speed. Additionally, 4z
in the near domain must be chosen to be small
enough to obtain a good resolution of the vehicle
geometry. Thus 4z in the near domain is less or
equal to 4z in the far domain with no exception.

The present semi-implicit computation has stability
criteria.

At/4y<0.5 an
and the C.F.L.(Courant, Friedrichs and Lewy) con-
dition for the present internal wave problem depends
on the densimetric Froude nember i.e.,

e/ y<F./32 (18)

Pressure Solution

The Poisson type of the pressure equation (Eq. 14)
is approximated by the 2-nd order central difference
in space.

(BI ;=207 + P12 0/ dy*
BT 2B B ) /422 =Sp a9

where the superscript ‘2--1’ denotes the new step
of time and the subscript i and j dencte the posi-
tion in y and =z direction respectively.

The forcing function Spl; is approximated by the
2-nd order central difference in space and first order

forward difference in time.
SP?,;:_(Q;:.'I,J‘Q?,;)/Jt
_[(vr+l,j+v?+l,j+l) (w?-rl’jv—lTw:‘,]“rl)
+(v."‘,;‘ +’l)f”,‘1) (w:‘:j +w?—17;)
— (W, 0T o) (@fy i+ w} ;)
”‘('”f',jﬂ'*’v?,,') (w?'j+l+ w:lfl,,ﬁl)]/zd ydz

—((vlyq, j+ o0, )P — 2(0f, 5707 )°
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d) ug = 2.040 Gu/s, Fr = 4.16

3 T
& TV 51

© 0 o o :Present nonlinear caleulation & Experiment by lofquist
X % % X | Linear approximation

— I Analytical result by lofquist
Fig. 3 Particle displacement sampled at Zp/D=1.0 Yp/D=0 for a sphere in the |
(D=4.76lecm, N=0.647rad/s)

Inear stratification
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+ (o] j+ il )8/ 4y?
- [(w?,j+2 +w?,j+l)2_2(w’:‘,j+1+w:’.'j)2
+ () w0 )T A2

+ (@, =207 00, )4

+ (g;’,iﬂ —2807 +'Q|”l,j—l )/ 42
— ] 1)/ 24z~
(£oj+1— Foj-1)/242] 20)

All the terms in Sp7

7 ; are determined in the pre-

vious time step n except the term @7;!; which is de-
rived from the potential theory.
Q;;llj (v;;‘ilrl K vp:xl )/Ay+(wpo| FA2 w;;il,f)/dz

@n
where the midseript ' ‘po’ implies the values from the
potential theory.

And @7 ; at the previous time step is obtained by
27 ;=W

”;’,i)/dy+(w?,ju'w?,j)/dz 22)

The iterative expression of the finite differenced

Poisson equation is

ARYY o Ak ok ik
bl =abla @i ytash; i

73413?,,-1‘}'0551’{,; (23)
where
ay = ay=A42%/(24y*+242%)
az=ag=4y*/ (24y*+2427%)

as= —dy¥dz?/ (24y*+242%)
‘k+1" denote the

iteration step understanding that the desired time step

where the superscript ‘®* and

is fixed at n—+-1,

This iteration is applied at the “fuid” and “vehicle”
cells. Since the coefficients a; through a4 are less than
unity this iteration is unconditionally convergent.

For the boundary cells, the above derived relations
can not be applied due to the finite grid. For this

reason, the simple one sided difference
i =p5 — 2Ly (24)
on

is used by utilizing the prepared information of the

Neuman type boundary condition dp/dn which had
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been obtained in the Eq. 25 and 26, by substituting
the proper values of i, j and n. Regardless of the type
of boundaries, the Neumann type of the pressure

boundary condition is required.
Velocity Solution

The conservative form of the equation 3 are appro-
ximated by the forward difference in time and the

central difference in space y and =z.
(ol =l ;) /4 (v jt ol ;)°
— (vl ;+0f DB/4dy
+ {7 0 +07 ;) (W w0
— (] ;o7 1) (W] j+wliy )0
/4dz=— (15— P2 )/ dy
+ﬁ’:‘n—:(”?H,;’_Z"’?,,‘+”?—1,j)/4y2

(O] =20, U7 5 0) /427 (25)
(wnﬂ_w?,i)/dt‘i‘ [(v?u,j +'U?+1,j-1) (w?+l,j+w?’j)
— (o] 407 0 (wf el )3/ 44y

+ (W} jatwl )P (w] w2 /4

-+ v
== -0t/ 42+ Duy Cwfy —2w]

+w§'-1,,»)/dy2+(w?,,-ﬂ 2w’ ;+w; j- 1)/ 427

~EB (o) 2= (ot o0 /2)(26)
The perturbed density equation is approximated

(l—|—uﬂ, ;)(F.ﬂt’l—P, P/4e+ (v?,j_{—v?“l,j)

(Ol ;— Py ;) /48 3+ (Wl - hw] 1)

(pi':j+1~p?,j—l)/4dz:0 @7

For “boundary” cells, the Sommerfeld radiation
condition is approximated by the forward difference
in time and space to obtain

s Y-

in,j —_Ch_j;(fizvj_ :‘"‘1:j)+f{:"j (28)
for the positive ¥ boundary with j=2,3,-,ja
A TR SATa DR (29
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for the negative y boundary with j=2,3, -, jn

4

== Co L R F ) (30)

for the positive = boundary with i=1,2, ---, i# and
R o L I 31
B dz ) i) >

for the negative ¢ boundary with i=1,2, -, in
where Ci is the horizontal phase velocity, C, is the
vertical phase velocity and f denotes the variable v, w

and p.

Numerical Calculations

The numerical simulations, based on the present
algorithm were conducted for the linear stratification.
A known potential flow around a sphere was chosen
for an illustration of the method.

Since the known experimental studies were for the
case of the linear stratification, a series of the num-
erical simulations were designed to meet the specific
test conditions of the available experimental data for
the verification of the present method.

For the numerical caleulations for a sphere of
diameter {. 76lcm running through the linearly stra-
tified fluid of N==0. 647 radian per second, the aspect
ratio of the Rankine ovoid was chosen to be 1. Six
different Froude number cases were made for speeds
of 5.493 through 1,025¢m/sec which were selected
to correspond to those in the experiment by Lofquist
9.

Fig. 3 presents the particle displacements sampled
at Zp/D=1.0 and Yp/D=0 for 6 different vehicle

speeds. In each figure, the present numerical calcu-

— Present Nonlinear Caloviation
o 9 Lipear tran
O gxperiments by Lofguist
o o
N
- N
= 1 \\F\
.- ~g
< [9)
= s © \g\ﬂ\\ 2
~— e} R P Y
- N
o 1 2z 1 4 s & 7 & 9 1 i 1
Fig. 4 Fr. vs. maximum wave height sampled at

Zp/D=1.0 Yp/D=0 for a sphere in the
linear stratification
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—_— Present Calculstion

s With Assumption of Zerc N

— Exact Sclution fc. Ideal Fiuid

/o

.1

WT_M
‘\n

0.1

-0.2

-1.0 =05 0.C [ P} 1.4 2.0

Fig. 5 Particle displacement sampled at Zp/D=1.0
Yp/D=0 for a sphere in the linear strati-
fication: comparison of two different met-
hods (D=4.76lecm, N=0.647rad/s, uo=
5.493cm/s, Fr=11.2)

lation was compared with the Lofquist’s experimental
result and with the Lofquist’s analytical solution. For
each run, the numerical calculation was carried out
for both nonlinear and linear system of equations.

Throughout the present study, the results of the
linear system were in a reasonable agreement with
the nonlinear results. It is noted that tke linear
system was obtained by setting the cross-stream adv
ection terms be zero in the governing equations (Eq.
3). The main feature of the nonlinearity observed
in these figures was the asymmetry of the upper and
lower half amplitudes due to the cross-stream adve-
ction.

In terms of the wave lengths, the numerical results
were nearly identical to the experimental results,
For Fr>>3, the numerical resulis of the wave ampl-
itude agreed with the experiments reasonably, but
for the extremely slow speed cases shown in Fig. 4
the numerical results disagreed with the experiments.
Comparison of the present method with the slender
body approximation (assumption of zero &) is shown
in Fig. 5. The slender body theory overestimates

about 6 times the present result for the sphere.
Conclusions

It appears that the present matching technique in

an axially marching scheme would have been a new



10

and useful tool to have estimate of the magnitude
of the vehicle-induced phenomena in the stratified
fluid.

Since the present numerical simulation results were
reasonably consistent with the experimental results,
there is an enhanced confidence in prototype predic-
tions obtained with the numerical experiments.

The axial wvelocity in the marching procedure,
which has been proved to be very crucial factor for
this kind of problems, could be handled due to a
special treatment of the continuity equation: in the
primitive variable system (i.e., pressure-divergence
system [P, 2]), the pressure is calculated iteratively
such that the corresponding velocity field satisfies the
full continuity equation, by using a unique form of
the kinematic boundary condition of the vehicle, i.e.,
the axial velocity gradient (or cross-plane divergence),
2,0(x, 5, 2), which is evaluated from the potential
theory.

Consequent features of the present algorithm are:

1) The present axially marching algorithm subst-
antially reduces the computer-storage requirement for
a three-dimensional fluid domain.

2) The vehicle-boundary condition is easy to spe-
cify. The matching procedure eliminates the difficulty
of imposing complex boundaries in the rectangular
grid system. Furthermore, faster convergence in the
iteration is obtained in the matching procedure than
in the local boundary treatment as in the slender
body approximation. The reason is that the boundary
condition, £2,,(z, 3, z), is distributed continuously over
a cross-section while the usual boundary condition
has a discontinuity.

3) The downstream boundary condition is not
necessary for this axially marching scheme.

4) The disadvantage would be that the potential
flow in the homogeneous fluid due to the rigid disp-
lacement must be known for the estimate of the

axial velocity.
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