GALERKIN APPROXIMATIONS OF RICCATI OPERATORS ARISING IN THE BOUNDARY CONTROLS FOR HYPERBOLIC SYSTEMS

  • Published : 1988.08.01

Abstract

In [2], we have shown that the optimal boundary controls for hyperbolic systems in L$^{2}$-spaces can be attained in a feedback form via Riccati operators. A number of authors [1, 5, 7 and 10] have investigated approximations of Riccati operators arising in distributed parameter systems. They assumed bounded controls for parabolic systems. However, we in this paper study Galerkin approximations of Riccati operators and feedback controls for hyperbolic systems with unbounded control actions. Let us briefly introduce some results of [2]. Let .ohm. be an open bounded region in R$^{n}$ with smooth boundary .GAMMA. where n is a fixed positive integer. We consider a strictly hyperbolic differential operator H(x) of order 1 on .ohm. with noncharacteristic boundary on .GAMMA.

Keywords