Streptomyces 속 중의 Acetanilide p-Hydroxylase에 관한 연구

Studies on Acetanilide p-Hydroxylase in Streptomyces spp.

  • Kim, Jung-Ae (College of Pharmacy, Seoul National University) ;
  • Lee, Sang-Sup (College of Pharmacy, Seoul National University)
  • 발행 : 1988.08.29

초록

For microbial production of acetaminophen, a popular analgesic-antipyretic from aniline, we screened various fungi and bacteria. And we succeeded to some extents in acetaminophen production by successful protoplast fusion between S. lividans and S. globisporus and also between S. rimosus and S. aureofaciens. However, more fertile results might be brought via performing the cloning of acetanilide p-hydroxylation genes of Streptomyces in yeast. This study was initiated to determine whether the acetanilide p-hydroxylase of Streptomyces is cytochrome P-450 species or non-heme iron protein species. The p-hydroxylationactivity on acetanilide in S. aureofaciens ATCC 10762 was found to be unstable on exposing to the air. However, 100,000xg supernatant of the cell free extracts which were prepared in $N_2$ atmosphere showed the p-hydroxylation activity. Characteristic absorption peak of cytochrome P-450 after reduction with dithionite and addition of CO was not observed in the region of 450nm. Moreover, metyrapone and 2, 6-dichloroindophenol did not affect this enzyme activity, but sodium azide, sodium cyanide, cupric sulfate, cadmium chloride, ${\alpha}$, ${\alpha}'-dipyridyl$, and o-phenanthroline reduced p-hydroxylase activity considerably. S. fradiae NRRL 2702 was shown to have strong p-hydroxylation activity in intact cells. This activity disappeared in its cell free extracts. In its 100,000xg supernatant, however, characteristic absorption peak of cytochrome P-450 after reduction with dithionite and addition of CO was observed at 446nm. Thus, the results herein presented suggest that acetanilide p-hydroxylase of Streptomyces aureofaciens is not related to cytochrome P-450 and may include non-heme iron protein for its activity. However, it is not clear whether acetanilide p-hydroxylase in S. fradiae belongs to the same category of S. aureofaciens.

키워드