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Abstract

In this paper we shall construct a ridge estimator in a multiple linear
model with the correlated error structure. The existence of the biaging para-
meter satisfying the Mean Squared Error Criterion is also proved.. Further-
more, - we shall determine the value of shrinkage factors by the iteration

method.

1. Introduction

Consider the generalized linear model

where it is assumed that X=(X,, X, ..., X,) is a known nx p matrix of rank q- p,

Y is an #x 1 vector of observations and & is the z>] vector of errors such that
E(e) ={ and E(SE')::»O'ZV,, .................................... (1 2)

The classical estimation procedure for the generalized linear model is that of gene-
ralized least squares(GLS) in which fBs is chosen such that the residual sum of
squares ¢(8¢) = (Y —Xfs)'V, "(Y — Xf;) is minimized. The minimization methodology
results in the well-known normal equations X'V, 'XfA;= X'V, 'Y which must be solved
for Bc. In the case that X'V,"'X is of full rank, (X’'V,.'X) ! exists and the GLS

estimatora are given by

Be= (X WV, IX) XV 7Y ceieeeeeecnninnin e (1.3)
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However, in the case that X'V, !X is of rank ¢-<(p, alternate methods must be
employed to obtain estimators. One such method is that which employs a generalized
inverse.In fact if X'V, 'X is of full rank but at least one eigenvalue approaches
zero, the GLS estimators are sensitive to a number of errors. Further, the variance
of GLS estimator become large as the matrix X'V,"'X approaches singularity. Al-
though the Gauss-Markoff Theorem assures us that in the class of all unbiased
estimators, the GLS estimator of estimable functions have minimum variance; we
are faced with the unhappy circumstances and, hence produce a large confidence
intevals for the estimator.

One way to remedy this problem is to drop the requirement that the estimator of
B is unbiased. Hoerl and kennard(1970) have suggested that the ordinary least squares
estimator may be replaced by the ridge estimator Bs(k) with biasing parameter
k>0. But Hoerl and kennard's ridge estimator is derived from the assumption usually
madz concarning the linear regression model with uncorrelated error structure,

In this article, we showed that if a biased estimator could be considered and if
one would use a different criterion for estimator selection, namely the mean aquared
error criterion of an estimator, the ridge-typs regression estimator could bz shown

to be superior to the GLS estimator.

2. The Form of Ridge Estimator

Let A be a diagonal matrix of eigenvalues, 2, of X'V, 'YX and G be an orthogonal
matrix of corresponding eigenvectors. Then we have G'X'V,'XG-=A4 and G-G"=1,.

If we write X*=X-(, and a=G’S, then the linear model (1.1) may be written as
Y KR B, e (2. 1)
Then the GLS estimator of a is given by

G (X¥V,1X®) LYY,y
s ARG XV T e e (2.9)

The variance of &¢ is then given by

Var(ag) = Var(A4'\G' X'V, 'y)

g2 A1,
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Unfortunately, if at least one or more eigenvalues approach to zero, the corre-
sponding coordinate of an estimator has large variance o¢21,"'. By allowing a small
amount of bias, we can obtain a biased estimator that has variances less than any
unbiased estimator. A number of proedure have been developed for obtaining biased

estimators of regression coefficients.
In this section, we consider some biased estimator which is a type of ridge esti-

mator.

Then G; and 2, satisfy the following equation.
X'V X)Gi =G,
This equation implies
(XV, I X)G=((XVX)Gy, o (XV T XD)G,)

= (RlG;, Zsz, ceny /ZpGp)

== JA.
From this expression, we obtain
X'V, ' X=GAG’
14
:Z:;.LG..G".
By the definition of matrix inverse,
I
X'V, X)) =300 GG
Hence we obtain
]
XV, IX) XV, y = 202, 1G,G XY,y
il

This leads to the following resuit.

Theorem 2.1. The GLS estimator 8, is of the form

T

Ed
= z;;':'li"(i(,‘” where ¢, =G XV, Ty (2.3
i=
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The ridge type estimator is given by
a(B)  (A+K) MG XV, ly i (2.4)

where K - Diag(k,) is a diagonal matrix of biasing parameter £,2>0. In terms of the

original model, the generalized ridge estimator is defined by as followings
Be(K) =Gae(k)
=G(A+K)Y \G' X'V, ty
= (X"/'"'l)( +GKG’)"'1X"("H‘1y ........................ (2. 5)

Consequently from above, we obtain the following result.

Theorem 2.2. The generalized ridge estimator f¢(K) is of the form
" » -
ﬁG(K)’:%;:a(li”f'ki)_xcic'i
where ¢ =G XV, .
Alternatively from the second equality of (2.%)

Bo(K)=GA+K)Y MAGGA\G' X'V, by
=G AG B e (2.6)

where O (A4-K)Y A
=Diag(d,); d,=A A +k), i=1,2,...,p.

is a diagonal matrix of shrinkage factors.

From the second equality of (2.6),

E(B:(K))-B=GAG'B—B
:G(A“IP)G’IQ ................................. (2_7)

Theorem 2.3. A;(K) is a biased estimator and

Bias(Bg(k))— — k(X'V, 'X +kI,)"' when all k,=k.
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o

Proof. Diag(d, 1) = Diag ('g;é}:)

= -k Diag(d,+k)"!
= k(Diag(4,) +k1,)"
= k(A +kl,)

From the equality of (2.7),

= R(GAG +kl,) !
= k(X'V, X v kD)

3. Mean Squared Error Comparison

Now in this section, we concentrate attention on the mean squared error(MSE)

of the proposed estimators, where the MSE of an estimator g is defined by

MSEB) =E(B—B) (B ) reemremmemmmmieiii G

A frequent criticism of the use of the mean squared error as defined in (3.1) to
measure the adequacy of an estimator is that it is only one member of a general
class of measures. If the comparisons of the mean squared error are to be made on
the basis of a single function, it may be possible to form a suitable weight sum of

coefficient mean squared error or, more generally, to compare the values of

GMSEBY=E(B—BY BB —B) ~vvevremmiemrmmiirmneninns (3.2)

where B is a non-negative definite matrix.
The purpose of this section is to establish a existence of a single biasing para-
meter k such that the MSFE of the ridge estimator is less than the MSE of the GLS

estimator. To show this, the follwing MSE matrix will be used., i.e.

MIxMSE(B) =E(B—BY (B~ B) oorovrrimimin, 3.3

Theobald(1974) showed that there exists a range of values of £ such that GMSE (8z)
- GMSE(8.5), where B¢ is the ordinary least squares estimator and 8, is the Hoerl

and Kennard's ridge estimator using f.s. In this section, we will show that the ridge
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estimator of this thesis also has the Theobald's result. To show this, the following

l.emmas are necessary. Let b, and b, be an estimator of S.

Lemma 3.1. The followings are equivalent.

1) MixMSE(h) —MtxMSE (b,) is non negative definite.

i) GMSE () ~GCMSE(b,) >0, for all non negative definite B.
Proof. See C.M. Theobald(1974). ///

Lemma 3.2. Let A be a positive definite nx# matrix and # be a #x1 column
vector, (i.e. #'e=FE,) Then
(v’ x)*

’ -
up - =u' A tu.
SUP T A

x'E By

and supremum is attained at x= A 'u,
Proof. See C.R. Rao(1965). ///

For K==kI,, we obtain

Var(Bs(k)) =a*(x'V,, "X +-1,) XV, XXV, U k) !
and

Bias(8s(k)) =G Diag(d,—1)G’

The mean squared error of §s(k) therefore is

MSE (fs(k)) =tr(Var(8¢(k)) )+ [Bias(fes(k)) ) (Bias(8s(k)))
=gftr((X'V, "X +RI) XV, XXV, X +k1,) 1)
+a’ Diag(d, - 1)%a.

g2 A Ja 2 2; 2
=Syt et (T ) e
The first term on the right-hand side of (3.4) is the sum of variances of the
parameter in fg(k) and the second term is the square of the bias. If £2>0, note that
the bias in fs(k) increases with k. However, the variance decreases as k increases.
In using ridge regression, we would like to choose a value of %k such that the

reduction in the variance term is greater than the increase in the squared bias. If

this can be done, the mean squared error of the ridge estimator As(k) will be less
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than that of generalized least squares estimator . Next theorem with Lemma 3.1
says that there exists a non-zero k for which GMSE(Bc(k)) is less than the variance
of 35'

Theorem 3.3. There exists a Kn,.>0 such that MIxMSE(B¢) ~MtxMSE(Bc(k))
is non-negative definite where 0<{k<{k,,..
Proof. Let V=MixMSE(8¢) -MtxMSE(8s(k)) and % be any non-zero column-

vector. Then

V=g (X'V, X))  =at (X' Vo, X ARL) XV DX (X'V X k)
—B( XV, X +kL)BE(XV X R

Put &§=(X'V,.'X +ki,)"'n. Then

V= o[ ROCV, X ALY (VLX) OOV X kL)~ XV, X ﬁﬁ—?

:aze[k“(X’V,"X)‘w- ok, —k* @ﬁ e
If 7 is non-negative definite, then

»'<7y>0, for n+#0,
iff ot (ROXV.X) 2kl ~k2~ﬂ-ﬁn-] -0

kz

R Ui U RS IR

Now sup #<] implies 0<(1, for £+0, Set A=k ( X'V, ' X) '+2kl,, x=§, and u=4.
¢
Then by Lemma 3.2,

B (CAG +~,§—»Gl,,(, )18
implies  A'G(A! -2 1) B o,

— 105 —



8 Byung-Cheol Won, Hae Kyung Kim

After simplification, we get

Since I;~~Diag(~}5~g}z—i—~) has positive diagonal elements less than I.
! I

\

L
2

a’._}f..],afga” implies a’a<lo?

2

20% 202

Hence k< aa = R
20?
’ Boax =555
huS ma ﬁ ﬂ ////

Note that MtxMSE(B)=Var(8) +(Bais(8))(Bias(8))".

For K=*kI,, by theorem 3.3, GMSE (8s(k)) is smaller than GMSE(8g). Since knu.
must be strictly positive for all ¢® and B provided that #'B is bounded, this proves
the existence theorem for the most M{xMSE criterion, and without any reference to
multicollinearity. The existence theorem is true when multicollinearity is absent.
However, in this cases there will be very little scope for reducing MSE (8¢, ) and
the positive £ will be very close to zero. Indeed, the range (0, Kex) COntains an
infinitely number of values of &, hence to find a value of & is difficult if not im-

possible.

4. The estimation procedure of biasing parameter
Let us define an acceptable range of # where in
GMSE(Bc(£)) <CGMSE(Bg) «+overevmvrimererinniiien, 4.1

In the previous section, the existence of % satisfying (4.1) is proved by showing
that the acceptable range is non-empty. However, it is difficult to find the appropriate
value of k in the acceptable range. In this section, first we describe the several
selection rules of % that appears in literature and derive the Hemmerle's analytic
solution to the generalized ridge estimator.

A. Hoerl and Kennard(1970) have suggested that an appropriate value of £ may

be determined by the inspection of ridge trace. The ridge trace is a plot of the
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element of fg(k) versus k£ in the acceptable range. Its objective is to select a reaso-
nably small values of %4 at which the ridge estimator Bg(k) is stable. However,
choosing # by inspection of ridge trace is a subjective procedure requiring judgement
on the part of the analyst, and it is difficiult for dealing with the generalized ridge
estimator.

B. To find more analytical solution, Hoerl, Kennard and Baldwin(1975) have

suggested that an appropriate choice for k is

where & and f¢ are founded from the generalized least squares solution. Note that
k is the harmonic mean of £, in (4.4).

C. In a subsequent paper, Hoerl and Kennard(197 ) proposed an iterative estimation
procedure based upon (4.2). Specifically, they deduced the algorithm for terminating
the sequence. Since this method is similar to that of Hemmerle's, we explain the
Hemmerle' method in a later part of this section.

D. From equation (3.1) and (3.4),
E(Bo~$) (B~ H) =0"352, "
and
E(ﬁc’ﬁa)zﬂ’ﬂ-kgzéglq

If we put Q::ﬁa,é,;mazz::’.x;‘, then @ is an unbiased estimator of 8B°. MacDonald

and Galarneau(1975) find a value of % such that the squared length of Be(k) is an

unbised estimator of SA°. That is,

If @0, choose k such that 8¢" (k) fec(&) = Q.
H @<.0, choose & such that £=0 (or «).

Note that 8¢(0) is the GLS estimator and f¢(o) is the zero vector.

We have defined the acceptable range of £ in (4.1) which is relevant only for
the ordinary ridge estimator 8c(k). For the generalized ridge estimator §.(K), there,
in general, a separate range for which 4, given by 07k, < kpur,:-

From equation (3.4), note that
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MSE(Bo(K)) =030 2, + a2 (3, )?

where 0, (A, +k,) 4.
Hopefully we minimize the MSE of §c(X), and the MSE of the 7/-th component
of Bs(K) is

MSE(E(;,..(K))--ﬁazB.-*R.-“+a.-2(5.<~1)‘- ..................... (4.3)

The necessary condition for a minimum of (4.3) requires that its derivatives with

respet to J; be zero. Then we obtain the minimum AMSE values of 4§, is

51::*_..2._..'3,-;..____._..
¢ cfa, P+ A,

From the definition of d,, the corresponding MSFE values of %, is

Since k, involves unknown parameter ¢, a,, we use %; as an estimator

. a?
k= &23” L T PPN (4.4)

Hence, we obtain

where F,=23,8¢, %072

From the equation (2.7) and (4.5),

G, (R) S8, 0w+ rermee e et (4.6)

Consider the following sequence of an estimator of «,,d,,

a F.
[ S .
d’c.n 5:‘ e 1+F,-
3,(0)‘% ) S F
i ¥t i ( ',(0)"3) +F‘

F
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In order to have algorithmic estimation, a procedure must be given for terminating
the sequence.lf the sequence 3,‘” converges, the converging solution is known to

solve the equation

. F,
e S
That is, 3‘.*’_5‘,‘ B F T e, e e e “:7

This leads to a following result.
Theorem 4.1. Tha /~th component of a;(K) is defined by

&, i (k)=8¥ ac,,

where ot —‘—-é—-+(—i~~~1“.-”‘)s OF, *wvrersremmuerintereriiasionacns (4.7-1)
3:" ;:,%_,~ <,_%_~F'.‘l)é .................................... 4.7-2)

Next, consider the stability properties of 8%. It seems reasonable to use the
relative difference [§,4]. For terminating the sequence [3:¢], the relative difference
[8,5*D 8.5 must be monotonically ‘decreasing. That is, the derivative of - |8,<*P
—8.9| with respect to to 8, must be negative. Then &, satisfies the following

equation
2FAGuP ) CF 4 2F (8,97 4 (8,074,
After simplification,
2F 18 (G 4 2F (BN 4 B e (4.8)

whire we multiply by (3.-“")‘ and F."* The inequality (4.8) simplifies to the fol-

lowing convergence condition
2F 1§ O (8.9 4 Fir? i, (4.9)
Hence we obtain the further result.
Theorem 4.2. The §* in Theorem 4.1 satisfies the followings

2F (3™ Fimie,
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Note that the value of §.* depond upon F; whether F,>»4 or F;<4.

i) If F;<{4, then both of the values of 8.* are imaginary. Omitting the imaginary
part, 8;* equals to %—-. But this solution does not satisfy Theorem 4.2. In this case,
we will use §,* as zero.

ii) If F.>>4, then 6;* has two solution. But, the solution (4.7-2) does not satisfies
Theorem 4.2, hence we obtain the solution (4.7-1). Consequently, from Theorem

4.1 and Theoremd. 2, the following result is obtained.
Theorem 4.3. The :-th component of d¢(K) is written by

if F;<4.

ag,(K)= [_L.g(.l..-*—F,-'l)%J&GJ if Fi>4.

5. Conclusions.

A number of conclusions emerge from this study. A main one is that, with respect
to the mean squared error criterion, ridge regression estimators are seen to be ex-
cellent. In particular, we have investigated the mean squared error of ridge-type
estimator based on generalized least squares estimator,

Even though several rules for choosing % are proposed here, these rules are
intended to aid an investigator confronted with a specific regression problem to arrive
at an acceptable choice of k2. There is no known mathematical method of explicitly
determining the value of %2 in a given problem.

A final main concern is that our ridge-type estimator is achieved when the resi-
duals are weighted in accordance with 1,"'. However, in practice V', is not known,
but one only has an approximation V. to V, and perhaps a reascnable bound on the
departure of ¥, from V.. If one use V, instead of V., one will ordinarily incur an
error in the estimated coefficient vector. Hence the explicit method of determining

the approximation V, is necessary in a given problem,
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