A Subclass of Starlike Functions

by

Faiz Ahmad

Department of mathematics, Quaid-i-Azam University Islamabad, PAKISTAN

Abstract

Let M be a positive real number and c a complex number such that $|c-1| < M \le Re\{c\}$. Let $f, f(z) = z + a_2 z^2 + \ldots$, be analytic and univalent in the unit disc. It is said to belong to the class S(c, M) if |zf'(z)/f(z)-c| < M. We find growth and rotation theorems for the class S(c, M).

1. Introduction

Let S denote the class of functions $f(z) = z + a_2 z^2 + \ldots$, which are analytic and univalent in the open unit disc $E = \{z, |z| < 1\}$. Let $0 \le \alpha < 1$ and $S^*(\alpha)$ be the subclass of S which is starlike of order α . Let m and M be positive real numbers such that $|m-1| < M \le m$. A function $f \in S$ is said to belong to the class S(m, M) if, for z in E,

$$\left| \frac{zf'(z)}{f(z)} - m \right| < M.$$

It is clear that $S(m,M) \subset S^*(m-M)$. The class S(m,M) was introduced by Jakubowski [2] and has also been studied in [1], [4] and [5]. In this paper we generalize the class S(m,M) by letting m be complex. Let M be a positive real number and c be a complex number such that

$$|1-c| < M < Re\{c\}$$
.

Let a function f of S belong to the class S(c, M) if, for z in E,

$$\left|\frac{zf'(z)}{f(z)}-c\right| < M.$$

¹⁹⁸⁰ Mathematics subject classification (Amer. Math. Soc.): 30C45. Keywords and phrases: univalent, starlike, distortion, rotation. Received Jan. 1, 1987. Accepted June 25, 1987.

We shall study growth and rotation theorems for the class S(c, M).

2. A Growth Theorem for S(c, M)

Let $f \in S(c, M)$ and define

$$g(z) = [zf'(z)/f(z)-c]/M.$$
 (1)

For |z| < 1, the function g is analytic and bounded, |g(z)| < 1, hence the values of g(z) are contained in the disc C onto which |z| < r is mapped by the linear transformation

$$w = \frac{g(o) + z}{1 + g(o)z} \qquad (2)$$

([3], p. 167). It is convenient to define

$$b=g(o)=(1-c)/M$$
,(3)

and, if $c \neq 1$,

$$d=M(1-|b|^2)/|b|$$
. (4)

Suppose the disc C has centre at the point β and has radius ρ . Since the mapping (2) has the inverse

$$z = \frac{b - w}{-1 + bw},$$

the points $(b-\beta)/(-1+b\beta)$ and -1/b are inverse with respect to the circle |z|=r, hence

$$\frac{b-\beta}{-1+b\beta} = -\frac{k}{b} \qquad (5)$$

for some k>0. Also

$$r^2 = \left| \frac{b-\beta}{-1+b\beta} \right| \left| \frac{-1}{b} \right| = \frac{k}{|b|^2}.$$

Thus $k=|b|^2r^2$ and (5) gives

$$\beta = \frac{b(1-r^2)}{1-|b|^2r^2}.$$
 (6)

The points b and $1/\bar{b}$ are inverse with respect to the circle $|z-\beta| = \rho$, hence $|\beta-b|$ $|\beta-1/\bar{b}| = \rho^2$ which gives

$$\rho = \frac{(1 - |b|^2)r}{1 - |b|^2r^2} \tag{7}$$

We shall now prove the following

Theorem 1. Let $f \in S(c, M)$ and b and d as defined above, then for |z| = r < 1,

$$re^{-Mr} < |f(z)| \le re^{Mr}, \text{ (if } c=1),$$

$$r(1-|b|r) \frac{d\left(\frac{1}{2} + \frac{Re\{b\}}{2|b|}\right)_{(1+|b|r)} d\left(-\frac{1}{2} + \frac{Re\{b\}}{2|b|}\right)_{\le |f(z)|}}{\le r(1+|b|r)} \frac{d\left(\frac{1}{2} + \frac{Re\{b\}}{2|b|}\right)_{(1-|b|r)} d\left(-\frac{1}{2} + \frac{Re\{b\}}{2|b|}\right)_{(\text{if } c \ne 1)}.$$

Proof Let g(z), β and ρ be as defined above. We have

$$Re\{\beta\} - \rho \leq Re\{g(z)\} \leq Re\{\beta\} + \rho \dots (8)$$

First let $c \neq 1$, $c = c_1 + ic_2$ and $b = b_1 + ib_2$. The inequality (8), in terms of f(z), becomes

$$\frac{Mb_1(1-r^2)}{1-|b|^2r^2} - \frac{M(1-|b|^2)r}{1-|b|^2r^2} \le Re\left\{\frac{zf'(z)}{f(z)}\right\} - c_1 \le \frac{Mb_1(1-r^2)}{1-|b|^2r^2} + \frac{M(1-|b|^2)}{1-|b|^2r^2}$$

A simple calculation gives

$$-\frac{M(1-|b|^2)(1+b_1r)r}{1-|b|^2r^2} \le Re\left\{\frac{zf'(z)}{f(z)}-1\right\} \le \frac{M(1-|b|^2)(1-b_1r)r}{1-|b|^2r^2}$$

Since $Re\{zf'(z)/f(z)-1\}=r-\frac{\partial}{\partial r}\log|f(z)/z|$, the above inquality gives, on integration from 0 to r,

$$\frac{b_1d}{2|b|} \log(1-|b|^2r^2) - \frac{d}{2} \log \frac{1+|b|r}{1-|b|r} \le \log \left| \frac{f(z)}{z} \right|$$

$$\le \frac{b_1d}{2|b|} \log(1-|b|^2r^2) + \frac{d}{2} \log \frac{1+|b|r}{1-|b|r}, \dots (9)$$

where $d=M(1-|b|^2)/|b|$. On exponentiation we get the desired growth theorem for S(c,M).

If c=1, then b=0 and we have

$$-Mr \le Re\left\{\frac{zf'(z)}{f(z)} - 1\right\} \le Mr$$

which leads to

$$r \exp(-Mr) \le |f(z)| \le r \exp(Mr)$$
.

The function $f(z) = z \exp(Mz)$ shows that the result is sharp. This completes the proof of the theorem. ///

Remark If c is real we obtain the results of Silverman [4].

3. Rotation Theorems for S(c, M)

The function g as defined in (1) maps E onto a domain which is contained in a disc centered at β and has radius ρ . Hence the image of zf'(z)/f(z) is contained in a disc C' centered at $M\beta+c$ and of radius $M\rho$. Also $M\rho < Re\{M\beta+c\}$, thus the origin lies exterior to C' and

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| \le \left| \arg \left\{ M\beta + C \right\} \right| + \arcsin \frac{M\rho}{|M\beta + c|} \cdots (0)$$

Since

$$M\beta+c=\frac{1-r^2+(1-|b|^2)cr^2}{1-|b|^2r^2}$$
,

(10) becomes

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| \le \arctan \frac{(1 - |b|^2) |Im\{c\}| r^2}{1 - r^2 + (1 - |b|^2) |Re\{c\}| r^2} + \arcsin \frac{\rho}{|\beta + c/M|}.$$
 (1)

To consider sharpness of the above result, let

$$f_a(z) = z(1+bz)^{M(1-|b|^2)/b}$$
.

We have

$$[zf'_o(z)/f_o(z)-c]/M = \frac{z+b}{1+bz}$$

Since |b| < 1, the right hand side maps the unit disc onto itself, hence $f_o \in S(c, M)$. Obviously f_o attains the bound in (1).

Now consider the imaginary part of g(z). It is clear that

$$-\rho+\operatorname{Im}\{\beta\}\leq \operatorname{Im}\{g(z)\}\leq \rho+\operatorname{Im}\{\beta\}$$

In terms of the function f, we get

$$-M\rho+M \operatorname{Im}\{\beta\}+\operatorname{Im}\{c\}\leq \operatorname{Im}\left\{\frac{zf'(z)}{f(z)}\right\}=\operatorname{Im}\left\{\frac{zf'(z)}{f(z)}-1\right\}\leq M\rho+M \operatorname{Im}\{\beta\}+\operatorname{Im}\{c\}$$

or

$$-\frac{(1-|b|^2)r(M-\operatorname{Im}\{c\}r)}{1-|b|^2r^2} \le \operatorname{Im}\left\{\frac{zf'(z)}{f(z)}-1\right\} \le \frac{(1-|b|^2)r(M+\operatorname{Im}\{c\}r)}{1-|b|^2r^2} \cdots (12)$$

Since $r = \frac{\partial}{\partial r} \arg\{f(z)/z\} = \operatorname{Im}\{zf'(z)/f(z)-1\}$. an integration from 0 to r gives, if $b \neq 0$,

$$-\frac{d}{2}\log\frac{1+|b|r}{1-|b|r}-\frac{d\operatorname{Im}\{c\}}{2|b|M}\log(1-|b|^{2}r^{2})\leq \arg\left\{\frac{f(z)}{z}\right\}$$

$$\leq \frac{d}{2}\log\frac{1+|b|r}{1-|b|r}-\frac{d\operatorname{Im}\{c\}}{2|b|M}\log(1-|b|^{2}r^{2})\cdots\cdot\cdot\cdot\cdot(3)$$

If c=1, i.e.b=0, then (12) gives

$$-Mr \le \arg\left\{\frac{f(z)}{z}\right\} \le Mr$$

The function $f(z) = ze^{uz}$ shows that the result is sharp. We have not been able to establish the sharpness of (3). We combine the above results in the following theorem:

Theorem 2. Let $f \in S(c, M)$ and b, d, β and ρ as defined above. Then

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| \le \arctan \frac{(1-|b|^2) |\operatorname{Im}\{c\}| r^2}{1-r^2+(1-|b|^2) |\operatorname{Re}\{c\}| r^2} + \operatorname{arc} \sin \frac{\rho}{|\beta+c/M|} \cdots 0$$

and

$$\left| \arg \left\{ \frac{f(z)}{z} \right\} + \frac{d \operatorname{Im}(c)}{2|b|M} \log(1-|b|^2r^2) \right| \le \frac{d}{2} \log \frac{1+|b|r}{1-|b|r}, \text{ if } c \ne 1 \cdots (15a)$$

$$\left|\arg\left\{\frac{f(z)}{z}\right\}\right| \leq Mr$$
, if $c=1,\dots$ (15b)

The results (4) and (15b) are sharp.

References

- 1. F. Ahmad, "Two subclasses of starlike and convex functions", submitted for publication.
- 2. Z.J. Jakubowski, "On the coefficients of starlike functions of some classes", Ann. Polon. Math. 26 (1973), 305~313.
- 3. Z. Nehari, Conformal Mapping, Dover Publications, New York, 1975.
- 4. H. Silverman, "Subclasses of starlike functions", Rev. Roum. Math. Pures et Appl. 23 (1978), 1093~1099.
- 5. H. Silverman and E.M. Silvia, "Subclasses of starlike functions subordinate to convex functions", Can. J. Math. 37 (1985), 48~61.