Remarks on Coherent Analytic Sheaves

Jong-Jin Kim

Department of Mathematics, Chonbuk National University, Chonju 520, Korea.

1. Introduction

The contents of this thesis is described as follows. In section 2 we develop the general theory of sheaves used in later section. The main contents of §3 is to prove Theorem 3.6 concerning coherent analytic sheaves: Let \mathscr{F} be a sheaf on a closed complex submanifold N of M, and \mathscr{F} be the trivial extension of \mathscr{F} to M. Then \mathscr{F} is coherent if and only if \mathscr{F} is coherent. Section 4 deals with the properties of coherent analytic sheaves. Especially, we concentrate the Theorem 4.2 which says that if \mathscr{F} is coherent on M, then Supp (\mathscr{F}) is an analytic subset of M. Also using this Theorem we shall prove Corollary 4.3 that is one of local properties of coherent sheaves.

2. Preliminaries

Let \mathscr{F} be a presheaf of rings on X. It is clear that $\{\mathscr{F}(U), \rho_{vv}\}$ is an *inductive* system (direct system). Thus, for each $x \in X$ the inductive limit ring is defined as

$$\mathscr{F}_{x} = \lim_{X \in \mathcal{U}} \mathscr{F}(U) \ (U: \text{ open in } X.)$$
 ([8]).

Each \mathscr{F}_x is called the *stalhs* of \mathscr{F} at x, and each element of \mathscr{F}_x is called a *germ* at x. In this case, there is a natural mapping

and f_x is said to be the germ of f, where $U \subset X$ is an open set containing x.

Received April 30, 1987. Accepted May 7, 1987.

With the above notations, set

$$\widetilde{\mathcal{F}} = \bigcup_{x \in \mathbf{Y}} \mathcal{F}_x$$

and let $\pi \colon \widetilde{\mathscr{F}} \longrightarrow X$ be defined by $\pi^{-1}(x) = \mathscr{F}_x$ for all $x \in X$. Given $f \in \mathscr{F}(U)$ (U: open in X), define

$$\widetilde{f}: \begin{array}{ccc} U & \longrightarrow \widetilde{\mathcal{F}} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

For a base of open sets for the topology of $\widetilde{\mathscr{F}}$, we take the family of sets $\widetilde{f}(U)$ over all $U \in \mathscr{U}(x)$ and $f \in \mathscr{F}(U)$. It is obvious that the *local section* $\widetilde{f}: U \longrightarrow \widetilde{\mathscr{F}}$, $f \in \mathscr{F}(U)$, are continuous in this topology. Moreover, it follows that

- (i) $\pi: \mathcal{F} \longrightarrow X$ is a local homeomorphism.
- (ii) the induced topology on $\mathscr{F}_x \subseteq \widetilde{\mathscr{F}}$ is discrete for all $x \in X$.

([3]). We call the topological space $\widetilde{\mathscr{F}}$, together with the projection $\pi: \widetilde{\mathscr{F}} \longrightarrow X$, sheafification of the presheaf \mathscr{F} . In general, a sheaf is defined as follows.

Definition 2.1. Let \mathscr{F} and X be topological spaces, and let $\pi:\mathscr{F}\longrightarrow X$ be a local homeomorphism. (\mathscr{F},π,X) is called a *sheaf of rings* on X it

- (i) each stalk $\mathscr{F}_x(=\pi^{-1}(x))$ has the structure of a ring for all $x \in X$.
- (ii) the ring operations are continuous in the topology on F.

It is clear that (\mathcal{F}, π, X) as above is also a sheaf of rings on X.

For a complex manifold M with dimension $m \ge 0$, we define the contravariant functor

where Ring is the category consisting of all rings and ring homomorphisms.

Of course, the functor \mathcal{O}_{M} is a presheaf of rings on M. Let us denote the sheafification of \mathcal{O}_{M} by the same letter \mathcal{O}_{M} . That is, we put \mathcal{O}_{M} as a set

$$O_{\mathcal{H}} = \bigcup_{x \in \mathcal{H}} O_{\mathcal{H}, x}$$

This sheaf \mathcal{O}_{M} of rings on M is called the OKA sheaf of M or the structure sheaf of M ([10]). We shall use the following notations.

$$\theta_{M} = \theta$$
, $\theta_{M,x} = \theta_{x}$, and $\theta_{U} = \theta_{U}$ (restriction to U).

It is important to note that for each $x \in M$, \mathcal{O}_x is a Noetherian local domain with unique factorization property. Furthermore, $f_x \in \mathcal{O}_x$ is a unit if and only if $f(x) \neq 0$ ([3], [4], [14]). Throughout this paper, $\mathcal{M}_{\mathcal{O}_x}$ will denote the maximal ideal of \mathcal{O}_x .

Let X be a topological space and \mathcal{R} (resp. \mathcal{F}) be a sheaf of rings (resp. abelian groups) on X. Then \mathcal{F} is said to be a *sheaf of \mathcal{R}-modules* on X or \mathcal{R} -sheaf on X if

- (i) \mathscr{F}_x has the structure of an \mathscr{R}_x -module for all $x \in X$
- (ii) the module operations are continuous.

In particular, if $\mathcal{A} = \mathcal{O}_M$ then \mathscr{F} is called an *analytic sheaf* on M. Let \mathscr{F} be an analytic sheaf on M. Then we note that for each open subset U of M.

$$\mathscr{O}(U) = \{ \sigma \colon U \longrightarrow \mathscr{O} \mid \sigma \text{ is a continuous section on } U \}$$

and

$$\mathscr{F}(U) = \{ \sigma \colon U \longrightarrow \mathscr{F} \mid \sigma \text{ is a continuous section on } U \}.$$

Let M and N be complex manifolds. By a $map \phi: M \longrightarrow N$ we mean a holomorphic map of M to N ([7], [14], [15]). By the natural way the sheaf \mathcal{O}_M is a sheaf of \mathcal{O}_N -module. That is, for each $x \in M$ and each $g_{\theta(x)} \in \mathcal{O}_{N,\theta(x)}$

$$g_{\phi(x)} \cdot \mathcal{O}_{\mathbf{M},x} = (g \circ \phi)_x \cdot \mathcal{O}_{\mathbf{M},x} \cdots \cdots (A)$$

Definition 2.2. Let Y be a subset of a complex manifold M. Then Y is said to be an analytic subset of M if for each $x \in M$ there exists an open neighborhood U of x and a holomorphic function

$$f: U \longrightarrow C^{\flat}$$
 such that $Y \cap U = f^{-1}(0)$ (\flat may depend on x) ([5], [9], [13]).

Notice that an analytic subset of M is necessarily closed.

Let Z be an analytic subset of M. For each open subset U of M, we put $I_z(U) = \{f: U \longrightarrow C \mid f \text{ is holomorphic and } f \mid_z \equiv 0\}$. Then $I_z = \{I_z(U), \rho_{vv}\}$ is a presheaf of ideals of ρ_M . The sheafification of I_z is denoted by the same letter I_z . Then for each $x \in M$, we have

$$I_{z,x} = \begin{cases} \mathscr{O}_{M,x} & \text{if } x \notin \mathbb{Z} \\ \text{an ideal of } \mathscr{O}_{M,x} & \text{if } x \notin \mathbb{Z}. \end{cases}$$

We put the quotient sheaf $\theta_{\rm M}/I_z = \theta_z$, then we have an exact sequence

Definition 2.3. For complex manifolds M and N, let $\phi: M \longrightarrow N$ be a map (i.e., holomorphic map).

(i) <Inverse image sheaves>

Let ${\mathscr F}$ be an analytic sheaf on N i.e., ${\mathscr F}=({\mathscr F},\pi,N)$. We Tut

$$\phi^{-1}\mathscr{F} = \bigcup_{x \in \mathcal{U}} \mathscr{F}_{f(x)}$$

For each open subset U of N, we can choose an open subset V of M with $\phi(V) \subset U$. Take an element $s \in \mathcal{F}(U)$, we put

$$\tilde{S}(U) = \{s_{\ell(x)} | x \in V\}.$$

For a basis of open sets with respect to the topology on $\phi^{-1}\mathscr{F}$, we take the family of sets $\widetilde{S}(U)$. Then for each $x \in M$, $(\phi^{-1}\mathscr{F})_x$ is an $\mathscr{O}_{N,\phi(x)}$ -module. It follows from (A) that $\mathscr{O}_{M,x}$ is an $\mathscr{O}_{N,\phi(x)}$ -module, and we also can define

$$\phi^*\mathscr{F} = \phi^{-1}\mathscr{F} \otimes_{i^{-1}} \mathscr{O}_{n}$$

Then $\phi^*\mathcal{F}$ is an analytic sheaf on M which is called the analytic inverse image sheaf of \mathcal{F} . Note that, for each $x \in M$,

$$(\phi^{-1}\mathcal{F})_x = \mathcal{F}_{\theta(x)}$$

$$(\phi^*\mathcal{F})_x = \mathcal{F}_{\theta(x)} \otimes_{\mathcal{O}_{M}, \theta(x)} \mathcal{O}_{M, x}$$

(ii) <Direct image sheaves>

Let \mathscr{F} be an analytic sheaf on M. For each open subset U of N, $\{\mathscr{F}(U), \rho_{VN}\}$ is a presheaf. The sheafification of this presheaf, denoted by $\phi_*\mathscr{F}$, is called the *direct imagesheaf* of \mathscr{F} . Since $(\phi_*\mathscr{F})_{\mathscr{F}(x)} \subset \mathscr{U}\mathscr{F}_x$, $\phi_*\mathscr{F}$ is a sheaf of \mathscr{O}_M -modules. For each $x \in M$, since $1 \subset \mathscr{O}_M$, x and x is a sheaf of x is an analytic sheaf on x.

The following are elementary properties related to ϕ_* and ϕ^* whose proofs can be referred in ([2], [3], [4], [8]).

- (a). ϕ_* a is a left exact functor.
- (b). ϕ^* is a right exact functor.

Let X be a topological space and Z a closed subspace of X. For the inclusion map $i: Z \longrightarrow X$ and a sheaf \mathscr{F} on Z, $i_*\mathscr{F} = \overset{\sim}{\mathscr{F}}$ is called the *trivial extension* of \mathscr{F} to X, or the sheaf of X obtained by extending \mathscr{F} by zero outside Z.

Proposition 2.4. With the notations above the following hold:

(i)
$$\widetilde{\mathscr{F}}_{\mathbf{x}} = \begin{cases} 0 & \text{if } \mathbf{x} \notin \mathbb{Z} \\ \mathscr{F}_{\mathbf{x}} & \text{if } \mathbf{x} \in \mathbb{Z}. \end{cases}$$

(ii)
$$i^{-1}\widetilde{\mathscr{F}} = \mathscr{F}.$$

3. Coherent Sheaves

In this section, by X(resp, M) we denote a topological space (resp, complex manifold).

Let \mathscr{F} be an \mathscr{R} -sheaf on X. Then finitely many sections $s_1, \dots, s_s \in \mathscr{F}(U)$ define an \mathscr{R}_v -homomorphism

$$\sigma: \mathscr{R}_{U}^{P} \longrightarrow \mathscr{F}, (a_{1,x}, \cdots, a_{P,x}) \longrightarrow \sum_{i=1}^{p} a_{i,x} s_{i,x} (x \in U).$$

We say that \mathscr{F}_{v} is generated by the sections s_{1}, \dots, s_{r} if σ is surjective. An \mathscr{R} -sheaf \mathscr{F} is called *finitely generated* or of *finite type* at $x \in X$ if there is an open neighborhood U of x such that \mathscr{F}_{v} is generated by finitely many sections in \mathscr{F} over U.

Definition 3.1. An \mathscr{R} -sheaf \mathscr{F} is called of finite type on X if it is of finite type at all points $x \in X$.

Let \mathscr{F} be an \mathscr{R} -sheaf on X. If $\sigma: \mathscr{R}_v \xrightarrow{p} \mathscr{F}_v$ is an \mathscr{R}_v -homomorphism determined by sections $s_1, \dots, s_p \in \mathscr{F}(U)$, the sheaf of relations of s_1, \dots, s_p is defined by

$$\mathcal{R}el(s_1,\dots,s_p) = \operatorname{Ker}(\sigma) = \bigcup_{x \in \mathcal{U}} \{(a_{i_1,x},\dots,a_{p_i,x}) \in \mathcal{R}_x^p \mid \sum_{1}^p a_{i_1,x} s_{i_1,x} = 0\}.$$

Obviously this is an \mathcal{A}_v -submodule of \mathcal{A}_v^* . An \mathcal{A} -sheaf \mathcal{F} is called of relation finite type at $x \in X$ if, for every finite system s_1, \dots, s_r of sections over an open neighborhood U of x, the sheaf of relations $\mathcal{R}el$ (s_1, \dots, s_r) is of finite type at x.

Definition 3.2. An \mathcal{R} -sheaf \mathcal{F} is called of relation finite type on X if \mathcal{F} is of relation finite type at all points of X.

The following property can be proved by using the Weierstrass Preparation Theorem ([3], [6], [11], [12]).

Property 1. For an open subset U of M and $s_1, \dots, s_p = \theta_M^q(U)$, the sheaf of relations $\Re el(s_1, \dots, s_p)$ is a subsheaf of θ_U^p of finite type.

Definition 3.3. An \mathscr{R} -sheaf \mathscr{F} on X is called *coherent* if \mathscr{F} is of finite and of relation finite type on X.

An analytic sheaf \mathscr{F} on M is said to be of finite representation if, for each $x \in M$, there exist an open neighborhood U of x such that the sequence

$$\mathcal{O}_{\mathcal{U}} \xrightarrow{\flat} \mathcal{O}_{\mathcal{U}} \xrightarrow{q} \mathcal{F}_{\mathcal{U}} \xrightarrow{} 0$$

is exact.

Property 2. Every analytic subsheaf of \mathcal{O}_{M}^{q} which is of finite type is coherent. By Definition 3.3. and Property 2, the following is easily proved.

Property 3. Let \mathscr{F} be a coherent analytic sheaf on M. Then for any open subset U of M and $s_1, \dots, s_r \in \mathscr{F}(U)$, $\mathscr{R}el(s_1, \dots, s_r)$ is also a coherent sheaf.

Let dim M=m. Then from the Hilbert Syzygy Theorem ([3], [4]), and Definition 3.3, for every coherent analytic sheaf $\mathscr F$ on M we can find a free resolution of $\mathscr F$ over some open neighborhood U of each $x \in M$ such that

$$0 \longrightarrow \mathcal{O}_{v}^{\flat_{n}} \longrightarrow \mathcal{O}_{v}^{\flat_{n-1}} \longrightarrow \cdots \cdots \longrightarrow \mathcal{O}_{v}^{\flat_{0}} \longrightarrow \mathcal{F}_{v} \longrightarrow 0$$

([3]).

We have the following basic properties of coherent analytic sheaves whose proofs are referred in ([3], [4]).

Property 4. (i). Suppose $0 \longrightarrow \mathscr{F} \longrightarrow \mathscr{G} \longrightarrow \mathscr{X} \longrightarrow 0$ is a short exact sequence of analytic sheaves on M. If any two of the sheaves \mathscr{F} , \mathscr{G} and \mathscr{X} are coherent, so is third.

(ii). Let $\alpha \colon \mathscr{F} \longrightarrow \mathscr{G}$ be a homomorphism of coherent analytic sheaves on M. Then $\operatorname{Ker}(\alpha)$, $\operatorname{Im}(\alpha)$ and $\operatorname{Coker}(\alpha)$ are also coherent analytic sheaves on M.

Proposition 3.4. Let N be a complex submanifold of M. Then I_N and $\mathcal{O}_N = \mathcal{O}_M/I_N$ are coherent analytic sheaves on M.

- **Proof.** (a). If N is an open submanifold of M, then, by the uniqueness of analytic continuation (Note dim $_{c}M$ =dim $_{c}N$), I_{N} =0 and so I_{N} is trivially coherent.
- (b). In case of $\dim_c N = k < m (= \dim_c M)$. Let $\{(U, \phi_v)\}$ be a local coordinate system of M. Then since $\phi_v : U \approx C^m$, we may assume that $M = C^m$ and $N = C^k = \{(z_1, \dots, z_k, 0, \dots, 0) \in C^m\}$. By our definition, we have $I_N(U) = \{f \in \mathcal{O}_M(U) | f|_N = 0\}$ for each open subset $U \subset C^m$. But since $U \cap N = \phi$ implies $I_N(U) = \mathcal{O}_M(U)$, $I_{N,z} = \mathcal{O}_{M,z}$ for all $z \notin N$. Hence I_N is coherent on M N, because \mathcal{O}_M is coherent.

If $z \in N$ and U is an open neighborhood of z, then $f(z_1, \dots, z_k, 0, \dots, 0) \equiv 0$ for each $f \in I_N(U)$ where $(z_1, \dots, z_k, 0, \dots, 0) \in N \cap U$. Writting z_i as i-th coordinate function for $i=1,2,\dots,m$, f is gener ated by $\{z_{k+1},\dots,z_m\}$. Thus I_N is of finite type and so I_N is coherent on N (by Property 2).

And also since I_N and \mathcal{O}_M are coherent sheaves, by (ii) of Porperty 4 \mathcal{O}_N is a coherent sheaf. Q.E.D

Let Y be a proper analytic subset of M. If for each $x \in Y$ there exist an open neighborhood U of x in M and an element $f \in A(U)$ such that $f^{-1}(0) = U \cap Y$, then we say that Y is an analytic hypersurface of M.

It is remarked that Y is an analytic hypersurface if and only if $I_{Y,x}$ is a principal ideal of $\mathscr{O}_{M,x}$ for each $x \in Y$ (Vol. 1 of [3]) (C).

Proposition 3.5. Let Y be an analytic hypersurface of M. Then I_Y and \mathcal{O}_Y are coherent sheaves.

Proof. As in the proof of proposition 3.4, in our assertion being local we may assume that $M=C^m$ and Y is an analytic hypersurface of C^m . By (C) above, for each $x \in Y$, since $I_{Y,x}$ is a principal ideal of $\mathcal{O}_{M,x}$, we can put $I_{Y,x}=(P_x)$, i.e., P_x is a generator of $I_{Y,x}$. Let P be a representive for P_x . If, for $f \in A(U)$, $f^{-1}(0) = U$ Y contains x, then there exists an open neighborhood V of x in U such that $I_{Y,x}=(P_y)$ for all $y \in V \cap Y$ (see Vol. 1 of [3]). That is, I_Y is of finite thpe. By Property 2, I_Y is a coherent sheaf. Moreover, by (ii) of Property 4, \mathcal{O}_Y is of course a coherent sheaf. ///

Let N be another complex manifold. A holomorphic map $\phi: M \longrightarrow N$ is said to be *finite* if ϕ is a closed and $\phi^{-1}(\phi(x))$ is a finite set for each $x \in M$. Therefore, if M is a closed submanifold of N and ϕ is the inclusion map, then ϕ is a finite map. Furthermormore, if a holomorphic map $\phi: M \longrightarrow N$ is finite and the sequence of sheaves on M.

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

is exact, then

$$0 \longrightarrow \phi_{+} \mathcal{F}' \longrightarrow \phi_{+} \mathcal{F} \longrightarrow \phi_{+} \mathcal{F}'' \longrightarrow 0$$

is the exact sequence of sheaves on N ([6]).

Property 5. Let $\phi: M \to N$ be a holomorphic map and $x \in M$ be an isolated point of the fiber $\phi^{-1}(\phi(x))$. Then, there exist open neighborhoods U of x in M and V of $\phi(x)$ in N such that

- (i) $\phi(U) \subset V$
- (ii) the induced map $\phi_{vv}: U \longrightarrow V$ by ϕ is finite.
- (iii) for any coherent analytic sheaf $\mathscr F$ on U, the direct image sheaf $(\phi_{vv*}) \mathscr F$ is a coherent analytic sheaf on V ([4], [6]).

Theorem 3.6. Let N be a colsed complex submanifold of M and $\phi: N \longrightarrow M$ be the inclusion map. For a sheaf \mathscr{F} on N, letting $\phi^*\mathscr{E} = \widetilde{\mathscr{F}}$ be the trivial extension of \mathscr{F} to M. Then \mathscr{F} is a coherent analytic sheaf on N if and only if $\widetilde{\mathscr{F}}$ is a coherent analytic sheaf on M.

Proof. (\Rightarrow). Clearly, \mathscr{F} has the structure of an \mathscr{O}_N -module and since \mathscr{O}_N is \mathscr{O}_M -module, \mathscr{F} has the structure of an \mathscr{O}_M -module.

Let y be any element of M-N. Then there is an open neighborhood U of y in M such that $U \cap N = \emptyset$. Hence $\mathscr{F}_v = 0$ and so $\mathscr{F}|_{M-N}$ is wherent analytic sheaf. If $x \in N$ is an element, then x is an isolated point of $\phi^{-1}(\phi(x)) = \{x\}$. Then by Property 5, there are open neighborhood U of x in N and V of $\phi(x)$ in M such that $\phi(U) \subset V$, $\phi_{vv}: U \longrightarrow V$ finite map and $\mathscr{F}_v = (\phi_* \mathscr{F})_v$ coherent on V. Thus $\phi_* \mathscr{F} = \mathscr{F}$ is coherent analytic sheaf on M.

(\Leftarrow). We assume that $\phi_*\mathscr{F} = \widetilde{\mathscr{F}}$ is a coherent analytic sheaf on M. Then, for each $x \in \mathbb{N} \subset M$, there exists an open neighborhood U of x in M such that

$$\mathcal{O}_{\boldsymbol{v}} \xrightarrow{\bullet} \mathcal{O}_{\boldsymbol{v}} \xrightarrow{\boldsymbol{q}} \overset{\sim}{\mathcal{F}}_{\boldsymbol{v}} \longrightarrow 0$$

is exact, where p and q are positive integers. Since ϕ^* is a right exact functor, we have the exact sequence of sheaves:

$$\phi^* \mathcal{O}_{v}^{\ p} \longrightarrow \phi^* \mathcal{O}_{v} \longrightarrow \phi^* \widetilde{\mathscr{F}}_{v} \longrightarrow 0$$

$$= 2.6 = -$$

We put $N \cap \phi^{-1}(U) = V$. Then, since

$$\phi^* \mathcal{O}_{\mathcal{U}} = \phi^{-1} \mathcal{O}_{\mathcal{U}} \otimes_{\ell^{-1} \mathcal{O}_{\mathcal{U}}} \mathcal{O}_{\mathcal{N}}|_{\mathcal{V}} = \mathcal{O}_{\mathcal{N}}|_{\mathcal{V}} \text{ and } \mathcal{O}_{\mathcal{U}}^{\mathcal{V}} = \mathcal{O}_{\mathcal{U}} \oplus \cdots \oplus \mathcal{O}_{\mathcal{U}} \text{ (p-times),}$$

We have $\phi^*(\mathcal{O}_{U}^{p}) = (\mathcal{O}_{N}|_{V})^{p}$

Thus

$$(\mathscr{O}_N|_V)^p \longrightarrow (\mathscr{O}_N|_V)^q \longrightarrow \phi^* \widetilde{\mathscr{F}}_U \longrightarrow 0$$

is exact. On the other hand,

$$\phi^*\widetilde{\mathcal{F}}_{v} = \phi^{-1}\mathcal{F}_{v} \otimes i^{-1}\varrho_{v}\varrho_{N}|_{v} = \mathcal{F}_{v} \otimes i^{-1}\varrho_{v}\varrho_{N}|_{v}$$

and

Therefore.

$$(\mathcal{O}_N|_V)^p \longrightarrow (\mathcal{O}_N|_V)^q \longrightarrow \mathcal{F}_V \longrightarrow 0$$

is exact (F is of finite representation). That is, F is a coherent analytic sheaf on N. ///

4. Supports of Coherent Sheaves

Let \mathscr{F} be a sheaf on M. We define the support of \mathscr{F} , written Supp, (\mathscr{F}) by

$$\operatorname{Supp}(\mathcal{F}) = \{x \in M \mid \mathcal{F}_* \neq 0\}.$$

Proposition 4.1. If \mathscr{F} is an analytic sheaf of finite type on M, then Supp (\mathscr{F}) is a closed subset of M.

Proof. Let $x \in M$ -Supp (\mathscr{F}) be any element. Then, since \mathscr{F} is of finite type on M, there is an open neighborhood U of x in M and $f_1, \dots, f_k \in \mathscr{F}(U)$ such that f_1, \dots, f_k , generates \mathscr{F} , for each $y \in U$. But since $x \notin \operatorname{Supp}(\mathscr{F})$, we have $\mathscr{F}_x = 0$ and $f_1, \dots = f_k, x = 0$. Hence there exist an open neighborhood V of x in U such that $f_1|_{V} = \dots = f_k|_{V} = 0$. That is, $\mathscr{F}|_{V} = 0$ and so $V \subset M$ -Supp (\mathscr{F}) . Thus M-Supp (\mathscr{F}) is an open set in M, and so Supp (\mathscr{F}) is a closed subset of M. ///

Theorem 4.2. Let \mathscr{F} be a coherent analytic sheaf on M. Then Supp \mathscr{F} is an analytic subset of M.

Proof. By our assumption, for an open subset U we have an exact sequence of sheaves:

$$\mathcal{O}_{\mathcal{V}}^{p} \xrightarrow{S_{0}} \mathcal{O}_{\mathcal{V}}^{q} \xrightarrow{S_{1}} \mathcal{F}_{\mathcal{V}} \longrightarrow 0,$$

where p and q are positive integers. In this case, there exist $f_1, \dots, f_q \in \mathscr{F}(U)$ such that, for each $x \in U$, $\{f_{1,x}, \dots, f_{q,x}\}$ generates \mathscr{F}_x and for $(a_{1,x}, \dots, a_{q,x}) \in \mathscr{E}_x^q$

$$s_1(a_{1,x},\cdots,a_{q,x}) = \sum_{i=1}^{q} a_{i,x} f_{i,x}.$$

Similarly, there exist $g_1, \dots, g_p \in \mathcal{O}^q(U)$ such that $\{g_{1,x}, \dots, g_{p,x}\}$ generates $\Re el(f_1, \dots, f_q)_x$ and for each $(b_{1,x}, \dots, b_{p,x}) \in \mathcal{O}_x^p$

$$s_0(b_{1,x},\cdots,b_{p,x}) = \sum_{j=1}^p b_{j,x}g_{j,x}.$$

We put

$$g_i = (g_i^1, \dots, g_i^q) \in \mathcal{O}(U)^q, (g_i^1, \dots, g_i^q) \in \mathcal{O}(U)$$

then s_0 can be written by a $q \times p$ -matrix

$$s_0 = \begin{pmatrix} g_1^1, \dots, g_s^1 \\ \vdots \\ g_1^q, \dots, g_s^q \end{pmatrix}$$

That is, for each $x \in U$ and $(b_1, x, \dots, b_{p,x}) \in \mathcal{O}_x^p$

$$s_{0,x}(b_{1,x},\cdots b_{p,x}) = \begin{pmatrix} g_{1,x}^{1}, \cdots, g_{p,x}^{1} \\ \vdots \\ g_{1,x}^{q}, \cdots, g_{p,x}^{q} \end{pmatrix} \begin{pmatrix} b_{1,x} \\ \vdots \\ b_{p,x} \end{pmatrix}$$

$$= \begin{pmatrix} b_{1,x}g_{1,x}^{1} + \cdots, b_{p,x}g_{p,x}^{1} \\ \vdots \\ b_{1,x}g_{1,x}^{q} + \cdots, b_{p,x}g_{p,x}^{q} \end{pmatrix}$$

It is clear that, for each $i=1,2,\cdots,q$,

 $\{g_{i,x}^i, \dots, g_{p,x}^i\}$ generates an ideal $\mathcal{Q}_{i,x}$ of \mathcal{O}_x .

Noting that from the exact sequence

$$\mathcal{O}_{U}$$
, $\frac{S_0}{}$, \mathcal{O}_{U} , $\frac{S_1}{}$, $\mathcal{F}_{U} \longrightarrow 0$.

we have, for each $x \in U$, the exact sequence

$$\mathcal{O}_x \xrightarrow{S_0, x} \mathcal{O}_x \xrightarrow{q} \xrightarrow{S_{1, x}} \mathcal{F}_x \longrightarrow 0,$$

and

$$\{x \in \operatorname{Supp}(\mathscr{F}) \cap U\} = \{x \in U \mid s_{1,x} \neq 0\}$$

$$= \{x \in U \mid \mathscr{O}_x/\mathscr{Q}_{1,x} \neq 0\} \mid \dots \mid \exists x \in U\mathscr{O}_x/\mathscr{Q}_{n,x} \neq 0\}$$

In facf.

$$\mathscr{F}_x = 0 \Longrightarrow s_{1,x} = 0 \Longrightarrow s_{0,x}$$
 is surjective $\Longrightarrow \mathscr{Q}_{1,x} = \cdots = \mathscr{Q}_{q,x} = \mathscr{O}_x$

Recall that $\mathcal{M}_{\mathcal{O}_x}$ is the maximal ideal of \mathcal{O}_x (see §2). Then since

$$\theta_x/2_{j,x}\neq 0 \longrightarrow 2_{j,x} \subset \mathcal{M}_{\theta_{xy}}$$

we have the following:

$$\mathcal{O}_x/\mathcal{Q}_{i,x}\neq 0 \longrightarrow g_i^{1,x}, \dots, g_i^{p,x}$$
 are not invertible $g_1^{i}(0)=\dots=g_i^{i}(x)=0$.

Hence we have

$$\{x \in U \mid \mathcal{O}_x/\mathcal{Q}_{i,x} \neq 0\} = (g_1^{i})^{-1}(0) \cap (g_2^{i})^{-1}(0)$$

and it is an analytic subset of M for $1 \le j \le q$. But since a finite union of analytic subsets is also an analytic subset, $Supp(\mathscr{F})$ is an analytic subset of M.///

Corollary 4.3. Let $\mathscr{F} \xrightarrow{a} \mathscr{G} \xrightarrow{b} \mathscr{K}$ be a sequence of coherent analytic sheaves on M such that

- (i) $b \circ a = 0$
- (ii) for a fixed point $x \in M$, $\mathscr{F} \xrightarrow{a_x} \mathscr{F} \xrightarrow{b_x} \mathscr{X}$ is exact.

Then the above sequence is exact on some open neighborhood of x.

References

- C. Bănică; Un théoméme concernant les familles analytiques d'eapaces complex, Revue Roumaine 18, 2 pp. 1515~1520 (1973).
- 2. G.E. Bredon; Sheaf Theory, McGraw-Hill Book company (1967).
- 3. M. Field; Several Complex Variables and Complex Manifolds Vol. I and I, Cambridge Univ. Press (1982).
- 4. G. Fischer Complex Analytic Geometry, Springer-Verlag (1976).
- 5. H. Grauert; Uber Modifikatonen und exzeptionelle analytische Mehgen. Math. Ann. 146. pp. 331~368 (1962).
- 6. ____; and R. Remmert; Coherent Analytic Sheaves, Springer-Verlag (1984).
- N. Kuhlamnn: Über holomorphe Abbildungen Komplexer Räume, Arch. Math. 15, pp. 81 ~90. (1964).

- 8. K. Lee and H. Lee; Sheaves, Complex Manifolds, Index Theorem, Hyong-seol Book Company (1983).
- 9. B. Malgrange; Analytic Spaces, Enseignement Math. (2) 14 pp. 1~28. (1968).
- 10. K, Oka; Mathematical papers, transl, by R. Narasimhan; with comments by H. cartan; ed, R. Remmert, Springer-Verlag (1984).
- 11. J.P. Serre: Prolongements des faisceaux Analytiques Cohérents Ann. Inst. Fouries (Grenoble) 16 fasc. 1 pp. 363~374. (1966).
- 12. Y.T. Siu; Noether-Lasker Decomposition of Coherent Subsheaves Trans. Amer. Math. Soci. 135, pp. 375~385 (1970).
- 13. W. Thimm; Untersuchungen Über das Spurproblem vhn Holomorphen Funktionen auf Analytischen Mengen, Math. Ann. pp.95~114. (1959).
- 14. R.O. Wells; Differential Analysis on Complex Manifolds. Springer-Verlag (1980).
- 15. K.W. Wiegmann; Uber Quotienten holomorph-konvexer komplexer Räume, Math. 2 pp. 251~258. (1967).