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NONEMBEDDABILITY AND NONIMMERSIBILITY
OF A PRODUCT LENS SPACE

Moo YOUNG SOHN

1. Introduction

In D], M. F. Atiyah introduced a method to solve non-immersion
and nonembedding problems of a smooth manifold M by using Adams
operators on the Grothendieck ring KO (M), and he applied his method
to the case of the real projective space RP (n). Later, H. Suzuki [8J
estimated a lower bound of i, j such that RP (n) XRP (m) can be
immersed in Rn+m+i and embedded in Rn+m+j, and M. Yasuo [9J
considered the case of product lens space f1 L2n i+1 (pmi). In this paper,

iEI

making use of the method initiated by [lJ, [8J, [9J, we estimate a
upper bound of the number of linearly independent tangent vector
fields over a product lens space L2n+l (p) XL2m+l (q), where p, q are any
odd prime numbers, and a lower bound of k, 1 such that L2n+l (p) X
L2m+l (q) can be immersed in R2(n+m+1l+k and embedded in R2(n+m+lHl.

In what follows, M will mean a smooth closed manifold. Immersion
and embedding will mean Coo-differentiable ones.

2. r-operator over the Grothendieck ring

Let F denote either the real field R or the complex field C, and let
VectF (M) denote the set of equivalence classes of F-vector bundles
over M. The Whitney sum of vector bundles makes VectF (M) a semi­
group and the Grothendieck group KF(M) is the associated abelian
group. The tensor product of vector bundles defines a commutative
ring structure in K F (M). As usual, we use the notation KO (M) and
K (M) for K R (M) and Kc (M) respectively. The trivial bundle of
dimension n will simply be denoted by n. Let Xo be a base point of
M, then clearly KO(xo)=Z (the ring of integers).
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We define Kb(M) =Ker{ i*: KO(M)-Z}, where i* is the homo­
morphism induced by the natural inclusion {xQ} -M, then clearly
KO (M) ~ZffiKb(M).

For xEVectR(M), the vector bundle Ai(X) is defined by the exterior
power operation 1\/ (x), i=O, 1, 2, 3, ....
We get the following formal properties of the operation Ai.

(1) AQ(x)=l (2) A1 (X)=X
j

(3) Ai(x+y)=~ Ai(x)Ai-j(x) (4) Ai (x) =0 for i>dimx.
i=O

=
We define At(x)=~ }I (x) ti, where t is an indeterminate. Let A(M)

i=O

denote the multiplicative group of formal power series in t with
coefficient in KO (M) and with constant term 1. Then (1) and (3)
assert that At defines a homomorphism VectR(M) - A (M) . Hence we
get a homomorphism At: KO(M)-A(M) and operators Ai: KO(M)-..
KO(M) with At(x)=~ Ai (x)ti. The r-operation in KO (M), rt: KO

i=O

(M) - A(M), is defined by the requirement that rt(x) =Atll-t(X) and
rt(x)=~ri(x)ti for xEKO(M).

i~O

Now let Z'(M) denote the tangent bundle over M and put f(M) =
-c (M) - n E Kb (M) , then the operations r i give us an information
of the structure of tangent bundle over M as follows.

THEOREM 2.1([8J). Ifri(f(M» =/=Ofor ani, O~i~n, then the number
of linearly independent tangent vector fields over M does not exceed n-i.

The following Atiyah criterion for an immersion and an embedding
will be used for our main result.

THEOREM 2.2([1]). If M is immersed in the (n+k)-dimensional
euclidean space Rn+k, then we have ri(-f(M»=O for i>k. If M is
embedded in Rn+l, then we have r i (-f(M» =0 for i~l.

The r-dimension and r-codimension of an n-dimensional manifold
M are defined as follows;

Dimr(M) = sup {iENlri (-c(M) -n) =/=O},
Coclr(M) =sup {iENlri (n--c(M» =/=O}.

Let p,q be any odd prime numbers. L2n+1(p)=S2n+l/Zp, L2m+l(q)=
S2m+1 / Zq the standard lens spaces, and let
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TIl: L2n+l(p) XL2m+l(q) -+ L2n+l(p),

TIz: L2n-rl(p) XL2m+1(q) -+ L2m+l (q) ,
TI",: L2n+l(p)XL2m+l(q) -+L2n+l(p)/\L2m+l(q)

be canonical projections,

The following is easily obtained by using cohomology properties of
the Grothendieck ring. where L2n+l ( ) 1\ L2m+l (q) is the smash
product.

THEOREM 2.3. (i) The induced homomorphisms

fIl*: KO(L2n+l(p)) -+KO(L2n+l(p)XL2m+l(q)),
TIz* : KO (L2n+l (q)) -+ KO(L2n+l(p) XL2m+l(q)),
TI '" * : KO (L2n+l (p) I\L2m+l (q)) -+ KO (L2n+l (p) xL2m+l (q))

are injective and we have a direct sum decomposition

KO (L2n+l(p) XL2m+l(q)) = TIl* (KO (L2n+l (p)))

EEl TI2* (KO (L2m+l (q))) EEl TI '" * (KO (L2n+l (p) !\L2m+l (q))).

(ii) If uEKO(L2n+l(p)) and vEKO(L2m+l(q)), then

TIl* (u) I1 2* (v) E I1 '" * (KO (L2n+l (p) l\L2mfl (q)))).

3. Applications to a product product lens space

Throughout this section, let p and q be any odd prime numbers, 7:

the tangent bundle over L2n+l(p)xL2m+l(q), and f=r-2(n+m+1).

Let ~,1j be the canonical complex line bundles over L2n+l(p) and
L2m+l(q) respectively and let a=~-le, b=1j-1e, where le denote the
complex trivial bundle. Then we have the following relations (cf. [3J)

rCL2n+l(p)) - (2n+1) = (n+1)re(a),

r (L2m+l (q)) - (2m+ 1) = (m+ 1) re (b),

Tt (re (a)) = 1+re (a) t-re (a) t 2,
Tt (re (b) ) =1+re(b)t-re(b)t2,

where re denote the realification of a vector bundle.

THEOREM 3.1. Dimr (L2n+l (p) XL2m+l(q))

=2 sup{kl (nt 1) (I11*re(a))k+(mt 1) (I12*re(b))k

+ i+j~ (n~1)(mt1)(I11*re(a))i(TI2*re(b))j*O},
l;;;;;;i~n+ 1
l~j~m+l
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( n
i
)where is the binomial coefficient.

Proof. Let 'Z"h 'Z"2 be the tangent bundles over £2n+l(p), £2m+l(q)
respectively, then

f=nl*'Z"l+ n2*'Z"2-2(n+m+1)
= nl*('Z"l- (2n+1» + n2*('Z"2- (2m+1»
= (n+1) nl*(re(a» + (m+1) n2*(re(b».

By using the property rt(x+y) =rt (x)rt (y) and the naturaIity of the
operator rt, we have

rt(f) = [n 1* {rt (re (a) )} In+l[n2* {rt(re(b»} Jm+I

= {1+ nl*re(a)t- n 1*re(a)t2}JZ+l{1+ n2*re(b)t- n2*re(b)t2}m+I

= L: (n-i: 1) (m-r 1) (n l*re(a»i (n 2*re(b»i (t-t2) Hi.
O~i~.+l t J
O;:;;;i~m+l

If we set

A k=(nt1) (nl*re(a»k+(m!l) (n2*re(b»k

+ Hl1 (nt 1) (mt1) (nl*re(a»i(n2*re(b»i,
l~i~n+l

l~~m+l

then, by taking the coefficient of t i , we have

rO(f) =1, r1(i') =Ah

r2 (f) =A2-Ah r3 (f) =A3-2A2,
t'(f) =A4-3A3+A2, rS(i') =As-4A4+3A3,

r5(f) =~-5As+6A4-A3' r 7 (f) =A7 -6A6 + 10As-4A"
r(f) =Ag-7A7 + 15~-10As+A4>

etc.
Therefore

Dimr(£2n+I(p) X£2m+I(q» =2 sup {k IAk*O}.

CoROLLARY 3.2([9J). Dimr (£2n+l(p»

=2 sup{iENli~n+1, (nt 1) (re(a»i*O}.

THEOREM 3.3. If rk(f1) *0 or r k(f2) *0 then rk(f) *0,
where f 1=-r(£2n+I(p» - (2n+1) EKO(£2n+1(p» and

f 2='Z" (L2m+I (q» - (2m+ 1) EKO(£2m+I(q».
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Proof. Since rk(f) =rk(f1) +rk(f2) +terms of the form

(nt 1)(mt 1) nh*re(a)}i {Il2*re(b)}i and

IlI*re(a) E IlI*KO(£2n+l (p», Il 2*re (b) E Il2*KO(£2m+1(q»,
{Ill*re (a)} i {Il 2*re (b) }i E Il A *KO (£2n+1 (p) l\£2m+1 (q»,

this theorem comes from theorem (2. 3) .

Next we compute the r-codimension of £2n+l (p) X£2m+I (q).

THEOREM 3.4. Codr (£2n+l(p)X£2m+l(q»

=2 sup {kl (nt k) (IlI*re(a) )k+ (mt k) (Il2*re(b»k

+.~ (n-!-i) (m-+: j ) (IlI*re(a»i(Il2*re(b»i::;i::O}.
'+1=1 t J
i,j~l

Proof. From the first part of the proof of theorem (3. 1), we have
-f= - (n+ 1) Ill*re(a) - (m+ 1) Il2* re (b) . Hence

rt(-f) = {1+ IlI*re(a)t- Ill*re(a)t2} -(n+}) {I+ TI2*re(b)t
- TI2*re (b) t2} -(m+})

-: i: (-1) i+i {(n-!-i) (m-!- j) (TII*re (a»i (TI2*re (b»i (t-t2) i+i}.
'+1=0 t J

If we also set

Bk= (nt k) (TII*re (a) )k+ (mtk) (TI2*re (b» k

+ L: (nti) (m-+:j) (TII*re(a»i(TI2*re(b»i,
Hj=1 J
i,j21

then, by taking the coefficient of t i , we have

fl(-f) =1, r1(-f)=-Bh r 2 (-f)=B2+Bh

r 3( -i') = -B3-2B2, r( -i') =B4+ (~)B3+B2'

rS
( -f) = -Bs- (i )B4- (~)Ba,

'f'(-f) =B6+ ( ~ )Bs+( ~ )B4- Ba,

r 7
( -f) =-B7 - (~)B6- (~)Bs- (~)B4'

r S
( -f) =Bs+ (i )B7 + (~)B6+ (~)Bs+B4,

etc.
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Codr (£2n+l (p) X£2m+1 (q)) =2sup {k IBk*O}.

COROLLARY 3. 5([9J). Codr (£2n+1 (p) )

=2 sup {iENI (nt
i) (re (a) )i*O}.

THEOREM 3.6. If rk(-i'l) *0 or rk(-rz) *0 then rk( -i') *0.
Proof. Since rk( -7') =rk(-i'1) +rk(-i'z) +terms of the form

(nt1) (mj
j
) {TIl*re(a)}i{TIz* re(b)}j and

TIl*re(a) E TIl*KO(£2n+l(p)), TIz*re(b) E TIz*KO(£2m+1(q)),
{TI 1*re (a)} i {TI 2*re(b)} j E TI;\*KO (£2n+I (p) /\£2m+I (q)),

this theorem comes from theorem (2. 3) .

The order of re (a) i in KO (£2n+1 (p)) was computed by Kawaguchi­
Sugawara.

THEOREM 3.7([5J). For l~i~[;J".the element (re(a))iEKO(£2n+1

(p)) is of order pl+(~-=-2D and (re(a))[~J:±:l=O, where [yJ is the integral

part of a real number y.

For the next theorem, we set

k(n,p) =max{klk~[;J, Vp (nt
1
)<1+[ ~ 2; ]},

where Vp (m) denote the p-adic valuation of m.

Let Span (M) denote the maximal number of linearly independent
tangent vector fieldfO over M.

THEOREM 3. 8. Span(£2n+l(P) X£2m+1 (q)) ~2(n+m+1) -2max {ken,
p), k(m, q)}.

Proof. Let ko=2max {k(n,p), k(m, q)}. From the definition of
k(n,p), we have O;;:;:;ko~2(n+m+l). By theorem (3.3), (3.7) and
corollary (3. 2) , we obtain rko (-r) * 0. Applying theorem (2. 1) , we
have Span (£2n+l(p) XVm+1(q)) :::;;2 (n+m+1) -ko;

For the next theorem, we set:

l(n,p) =max {klk;;:;:;[; J V p (nt
k
)<l+[ np-=:;]}'
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As geometrical interpretation of theorem (3. 6), we have non­
embeddability and nonimmersibility of LZn+1(p) XLZm+l(q) into Eucli­
dean spaces.

THEORBl 3.9. (i) LZn+l (p) xUm+l (q) cannot be immersible in
R2(n+m+D+2 maxiICn,Pl,ICm,q)!.

(ii) LZn+l(p) xum+l(q) cannot be embeddable in
R2Cn~m~D c-Zmax 11 Cn, Pl,l Cm, ql!.

Proof. Let lo=2max II (n, p), I (m, q)} . Using the definition of
I (n, p) and theorem (3. 6), (3. 7) corollary (3. 5), we have r10 ( - f) =1= O.
Applying Atiyah Criterion theorem (2. 2), we can get the desired results.
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