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NONEMBEDDABILITY AND NONIMMERSIBILITY
OF A PRODUCT LENS SPACE

Moo YouNG SoHN

1. Introduction

In [1], M.F. Atiyah introduced a method to solve non-immersion
and nonembedding problems of a smooth manifold M by using Adams
operators on the Grothendieck ring KO (M), and he applied his method
to the case of the real projective space RP(n). Later, H. Suzuki [8]
estimated a lower bound of 7, ;j such that RP(n) X RP(m) can be
immersed in R**7* and embedded in R»*m*i, and M. Yasuo [9]
considered the case of product lens space H L2»;*1(pmi), In this paper,

making use of the method initiated by [1] [8], [9], we estimate a
upper bound of the number of linearly independent tangent vector
fields over a product lens space L22*1(p) X L?>m*1(q), where p,q are any
odd prime numbers, and a lower bound of k, I such that L2#*1(p)X
L2m+1(g) can be immersed in R2#*m+D+k and embedded in R2(tm+DH,
In what follows, M will mean a smooth closed manifold. Immersion
and embedding will mean C”-differentiable ones.

2. r-operator over the Grothendieck ring

Let F denote either the real field R or the complex field C, and let
Vectp (M) denote the set of equivalence classes of F-vector bundles
over M. The Whitney sum of vector bundles makes Vecty(M) a semi-
group and the Grothendieck group Ky(M) is the associated abelian
group. The tensor product of vector bundles defines a commutative
ring structure in Kz(M). As usual, we use the notation KO(M) and
K(M) for Kz(M) and Ko(M) respectively. The trivial bundle of
dimension z will simply be denoted by n. Let z, be a base point of
M, then clearly KO(xz)=Z (the ring of integers).
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We define KO(M)=Ker{:i*: RO(M)—Z}, where i* is the homo-
morphism induced by the natural inclusion {zg}—M, then clearly
KOWM)=ZDKO(M).

For z&Vectz (M), the vector bundle 4 (z) is defined by the exterior
power operation Af(x), i=0,1,2,3, -

We get the following formal properties of the operation .

1) 2(x=1 _ @) A(zx)==x

(3) ¥zt y)=§ 2 (2) ¥ () (4) % (z)=0 for i>dimz.

We define 2, (:c)=f: A(z2)#, where ¢ is an indeterminate, Let A(M)
i=0

denote the multiplicative group of formal power series in ¢ with

coefficient in KO(M) and with constant term 1. Then (1) and (3)

assert that 2, defines a homomorphism Vectz(M) — A(M). Hence we

get a homomorphism Z, KO(M)—>A(M) and operators X : KO(M)—

KO(M) with 4,(z)= Z X(z)#. The y-operation in KO(M), 7,: KO

M) > ANM), is deﬁned by the requirement that 7,(z) =24, 1, (z) and
7 (z)= go ()¢ for z=€KOM).

Now let z(M) denote the tangent bundle over M and put #(M)=
(M) —n=KO(M), then the operations 7¢ give us an information
of the structure of tangent bundle over M as follows.

THEOREM 2.1([81). If ¥ (#(M)) #0 for ani, 0=i=<n, then the number
of linearly independent tangent vector fields over M does not exceed n—i.

The following Atiyah criterion for an immersion and an embedding
will be used for our main result.

THEOREM 2.2([1]). If M is immersed in the (n-+-k)-dimensional
euclidean space R*%, then we have 7i(—7(M))=0 for i>k. If M is
embedded in R**!, then we have 7' (—%(M)) =0 for i=l.

The y-dimension and 7-codimension of an z-dimensional manifold
M are defined as follows;
Dim, (M) =sup i€ N |y (z (M) —n) #0},
Cod, (M) =sup i€ Ny (n—z(M)) #0}.
Let p,q be any odd prime numbers. L2**1(p)=822*1/Z,, L’»*1(q)=
S§m+1/7 . the standard lens spaces, and let
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[T1: L2#*1(p) X L2 1(q) — L2 (p),
[ls 2 L1 (p) X L2 1 (q) — L**1(q),
[T, 2 LP»*1(p) X L2 (g) — L2721 (p) NL*™T1(g)

be canonical projections,

The following is easily obtained by using cohomology properties of
the Grothendieck ring. where L2#+1( )/ L?"*1(g) is the smash
product.

THEOREM 2.3. (i) The induced homomorphisms
[1,*: I£_~O(L2"“(P)) - 150(142”“(15) XL*m*1(q)),
[15* : KO(L***1(g)) — KO (L***1(p) XL*™*1(g)),
[TA* : KO(LA*1(p) AL 1(g)) — KO (L***1(p) X L**1(q))
are injective and we have a direct sum decomposition
KO (LPr+1(p) XL 1 (g)) =TI 1* (@SLZ”“ (»))
D@ I12* (KO (L*1(g))) DII ,* (KO (L***1(p) N\L*™*1(g))).
(i) 1If uc KO(L**1(p)) and ve KO (L?"*1(q)), then
1% (@) [T2* (@) € [1,* (RO (L27*1(p) AL 1 (g)))).

3. Applications to a product product lens space

Throughout this section, let p and ¢ be any odd prime numbers, =
the tangent bundle over L2**1(p) XL?*"*1(q), and #=t—2(n+m+1).
Let &7 be the canonical complex line bundles over L27*1(p) and
L?m*1(g) respectively and let a=&—1¢, b=7—1c, where 1¢c denote the
complex trivial bundle. Then we have the following relations (cf. [3])

z(L21(p)) — (2n+1) = (n+1)re(a),
(L1 (g)) — 2m+1) = (m+1)re(d),
7.(re(a)) =1+re(a)t—re(a)t?,

7. (re(3))=1+re(B) t—re(d) 2,

where re denote the realification of a vector bundle.

THEOREM 3.1. Dim, (L2#*1(p) X L?m*1(q))
=2 sup (1 (") (Mire @i+ ("3 1) (Mt re )*

+ . 5 (YY) Marre@)i st @)z,
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where (7:) is the binomial coefficient.

Proof. Let 7y, 7, be the tangent bundles over L?#*1(p), L?#*1(g)
respectively, then

t=[I1*1+ [ls*c2—2(n+m+1)
=I11*(z1— 2rn+1D) +I1:* (r2— @Cm+1))
= (n+1) [11*(re(@)) + (m+1) [T2* (xe (8)).
By using the property 7;(z+9%)=7,(2)7:(y) and the naturality of the
operator 7,;, we have

7@ =LIL1* e (@)} 7 I1* (s (re )} 1
= {1+ Ii*re@e— [11*re (@ = {1+ [Ts*re ()1 — [T *re (B) ) =
() (e @) (Ta*re ) =),

0<izr+l ( z
0= =m+1

If we set
A= (") (letre@)+ (47 (Marre@))*
+.5 (")) (M@ (e ®)5,

3
1<isn+l

then, by taking the coefficient of #, we have

7°(®) =1, (@) =4,
72 (8) =4,— 4y, 73(3) =A3—24,,
7 () =A;—34;+4,, 7%(8) =As—4A4+34,,
78(F) =Ag—5A45+64,—A,, 77(%) =A;—6A4+1045;—44,,
7'8 (7?) - Ag"— 7A7 "I" 15A6 - 10A5 + A4,
etc.
Therefore

Dim, (L?#*1(p) X L?™*1(q)) =2 sup {k| Az #0} .
COROLLARY 3.2([9]). Dim,(L*#*1(p))

=2 sup{iEN|iZn+1, (n—l:l) (re(a))i+0}.
THEOREM 3.3. If 7%(#) #0 or v2(%5) #0 then 7%(¥) #0,

where f=r(I2*1(p)) — (2n+1) EKOIT2*1(p)) and
To=7(L*"1(g)) — (2m+1) EKO(L*™1(q)).
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Proof. Since 74(%) =7k (%)) +7%(#;) +terms of the form
("D (") Mre@) T tre @)} and
[T:*re(a) € [1:*KO(L?**1(p)), [la*re(d) € [1.*KO (L1 (q)),
{Il *re(@} {I1.*re ()} € [1 \*KOL**1 (p) AL*™*1(q)),
this theorem comes from theorem (2.3).
Next we compute the y-codimension of L2#*1(p) X L?m*1(q).
THEOREM 3.4. Cod, (L?**1(p) X L**1(g))

—2 sup 1 ("1 F) (TTtre @) 4+ (" 8) (M atre 03
+ 2, (") (") (e @)t 6))5 20},

iti=k ?
i,jzl

Proof. From the first part of the proof of theorem (3.1), we have
—F=—{(n+1) [1*re(a) — (m+1) {1.* re(). Hence

7= = (4 Mitre@s— [l *re (@) L+ [lstre ()t
—_— H z*re (b) t2} —(m+D
=% o F) (M) (e @) (Mt ) = 4.

If we also set
Be=(" 1) (Mitre@)r+ (") (Ma*re @)
+ 3 (T () (tre @) (arre ),

i+i=k
i, j21
then, by taking the coefficient of #, we have
7‘0(_%) =1, 7‘1(—6) = ——Bla 72(_%) =BZ+BI’
7(—5)=—By—2B,, (—2)=B,+(3 )B4 B,

75(—%) =——Bs~—(li>B4—‘<g>Bs,
75(—%) =Bs+(?)35+< )34 B,
-(3

77(—%) =—B;— ( ) ) ( )B“’
70 =Bot( ] ) B+ (§ )Bot (3 ) B 2o

etc.
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Therefore
Cod, (L2»+1(p) X L2m+1(q)) =2sup {k| By £ 0} .

CoroLLARY 3.5([9]1). Cod,(L2#+1(p))
—2 sup i N| (”j”) (re(a))i#0} .

THEOREM 3.6. If 7*(—%1) #0 or v*#(—%5) #0 then 7#(—7) #0.
Proof. Since 7 (—7%) =y*(—%)) +7*#(—7%;) +terms of the form
(ED (") e @) (T15* re(®}7 and

i
[1*re(a) € [1,*RO (L**1(p)), [ls*re(d) € [12*KO (Lm*1(g)),
{T1*re(@)}  {[T2*re(®) } /€ [ \* KO (L2*1(p) A L™+1(g) ),

this theorem comes from theorem (2.3).

The order of re(a)? in KO(L?**1(p)) was computed by Kawaguchi—

Sugawara.

THEOREM 3.7([5]). For 1<i= [_Zn_} ‘the element (re(a))i€ KO (L*+!

n—2i n
($)) is of order p1+ (=1 and (re (a))Ef];-l:O, where | vy is the integral
part of a real number y.

For the next theorem, we set
_ n n+1 n—2k
k(n,p)—max{klk§[7], v, ("3 )<1+{ 2 ]}
where V,(m) denote the p-adic valuation of .

Let Span(M) denote the maximal number of linearly independent
tangent vector fields over M. ‘

THEOREM 3. 8. Span (L2%%1(p) X L¥*1(g)) <2(n+m-+1) —2max {k(n,
P) » k(m: Q)} -

Proof. Let ky=2max {k(n,p), k(m,q)}. From the definition of
k(n,p), we have 0=k,<2(n+m-+1). By theorem (3.3), (3.7) and
corollary (3.2), we obtain 7% (z) #0. Applying theorem (2.1), we
have Span (L2#%1(p) X L2 1(q)) <2(n—l—m+1) ko,

For the next theorem, we set!

o) —maxpi=[ 2] V("L a2 ).
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As geometrical interpretation of theorem (3.6), we have non-
embeddability and nonimmersibility of L22%1(p) X L2»*1(g) into Eucli-
dean spaces.

THEOREM 3. 9. () L1(p) XLm*1(q) cannot be immersible in
R2(rt+m+13+2 mnx‘.l(n,p),l(m,q)l.

(#)) L 1(p) XL*™*1(q) cannot be embeddable in

R2(n*‘m—‘1')~?-2maxll(n,p),l(m,q))_

Proof. Let ly=2max{l(n,p), 1(Gm,q)}. Using the definition of
1{(n,p) and theorem (3.6), (3.7) corollary (3.5), we have ylo(—%) #0.
Applving Atiyah Criterion theorem (2. 2), we can get the desired results,
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