The Krull dimension with an application of the valuative dimension

by Park, Chan-Bong

Won-Kwang University

1. Introduction

Let $R^{(k)} = R[x_1, x_2, \ldots, x_k]$ be polynomial ring in k indeterminates over a commutative ring R with identity and let dim $R^{(k)}$ denote the Krull dimension of $R^{(k)}$ for each non-negative integer k.

In [5] and [6], A. Seidenberg proved that if dim R=1, dim R[x]=2 if and only if the integral closure of R, \overline{R} , is a Prüfer domain.

Finally he proved that if R is a Prüfer domain then

dim $R^{(k)} = \dim R + k$ for positive integer k.

In [1], P. Jaffard introduced the notion of valuative dimension dim_vR , and he also proved that

 $dim_{\nu}R = Sup | dim \ \nu | \nu$ is a valuation overring of R |.

In [2], he also established the properties of $dim_{\nu}R$:

- a) $dim R \leq dim R$.
- . b) $dim_i R = dim R \leftrightarrow dim R^{(k)} = k + dim R$ for all non-negative integer k.

In this note we will discuss the followings:

- *, What would be ring which the Krull dimension coincides with the valuative dimension?
- *₂ What would be ring such that $dim R^{(k)} = dim R + k$ for all non-negative integer k?
- *2 is a result of Krull & Seidenberg that we have already cited.

 But here the same results of W. Krull & A. Seidenberg and the answer of *

But here the same results of W. Krull & A. Seidenberg and the answer of *1 will be given by using the property of the valuative dimension. First we will list the lemma well-known without the proof [3].

- 1) Any invertible ideal in a quasi-local domain is principal.
- 2) Let I be an invertible ideal in an integral domain R, and let S be a multiplicative closed set in R. Then I_s is invertible in R_s .
- 3) Let I be a finitely generated ideal in an integral domain R. Then I is invertible if and only if I_M is Principal for every maximal ideal M.
- 4) A quasi-local domain is a valuation domain if and only if it is a Bézout domain.

C. B. Park

Proposition 1. T. F. A. E. for an integral domain R [3]:

- 1) R is prüfer;
- 2) For every prime ideal P, Rp is a valuation domain;
- 3) For every maximal ideal M, R_{M} is a valuation domain.

Proof. 1) \rightarrow 2). Let J be a finitely generated non-zero ideal in R_P .

If J is generated by $a_i/s_1, \ldots, a_n/s_n(a_i, s_i \in R, s_i \notin P)$, then $J=J_\rho$, where $I=(a_1,\ldots,a_n)$. By hypothesis I is invertible; hence by Lemma 1) & 2) J is principal. By Lemma 4) R_ρ is a valuation domain.

- 2) \rightarrow 3). Trivial.
- 3) \rightarrow 1). Let I be an non-zero finitely generated ideal in R. Then every I_{M} is principal, so by Lemma 3) I is invertible.

Proposition 2. Let R, be a prüfer domain with quotient field K, and let V be a valuation domain between R and K. Then $V = R_P$ for some prime ideal P in R [3].

Proof. Let M be the unique maximal ideal of V and set $P = M \cap R$. For any s in R but not in P we must have $s^{-1} \in V$, for otherwise $s \in M$ and so $s \in P$. Thus $R_P \subset V$.

To prove that $V \subset R_P$ we note (Proposition 1) that R_P is a valuation domain. So if we take $v \in V$ and find $v \notin R_P$ we must have $v^{-1} \in R^P$, say $v^{-1} = a/s$, $a, s \in R$, $s \notin P$. Here $a \in P$ for otherwise a/s would be unit in R_P and $v \in R_P$, which we assumed is not the case. Hence $a \in M$ and $av \in M$, $s = av \in M \cap R = P$, again a contradiction.

Theorem 1. If R is a Prüfer domain,

 $dim R^{(n)} = dim R + n for all n$

Proof. To prove this it is enough to show that if R is a Prüfer domain then $\dim R = \dim_{\mathbf{k}} R$ because of property b) of the valuative dimension. By proposition $2 \ V = R_P$ for some $P \in \operatorname{space}(R)$.

Hence $dim_{i}R = sup | dim V | V$ are valuation overrings of R

- = $sup | dim R_P | P \in spec(R) |$ spec
- = $\sup |\dim P| P \in \Omega(R)$, maximal spectrum
- = dim R.

Theorem 2. If R is a Noether domain, then $\dim_{\mathbb{R}} R = \dim R$.

Proof. Since $\dim R^{(n)} = \dim R + n$ for all n if R is noetherian, by property b) it follows that $\dim_{\mathbb{R}} R = \dim R$.

References

- Jaffard. P., "Dimension des anneaux de polynomes: La notion de dimension valuative",
 C.R. Acad. Sci. Paric ser A-B, 246(1958), 3305-3307.
- 2. Jaffard, Paul, "Theorie de la dimension dans les Anneaux de polynomes", Gauthier-Villars, (1960).
- 3. Kaplanski, I., Commutative rings, Univ. of Chicago, (1974).
- 4. Krull, W., "Jacobsconsche rings, Hilbertscher Nullstellensatz, Dimensionentheorie", Math. Z. 54 (1951), 354-387.

- 5. Seidenberg, A., "A note on the dimension theory of rings", Pacific J. Math. 3 (1953), 505-512.
- 6. Seidenberg, A., "On the dimension theory of rings, II", Pacific J. Math. 4(1954), 603-614.