NN TR O BEEE> Journal of the Korea Society of Mathematical Education
%87:&?? sol.éXXV, NO.RS Jun. 1987. Vol. XXV, No. 3

Note On the (Cr)-space and the Closed Graph Theorem

by Ha Yeoung-Soon, Son Yong-Kyu, Lee Sang-Kyu and Lau Jeung-Hark
Chin Ju Teachers College, Chin Ju, Korea
—— Dedicated to Professor Han Shick Park on his 60th birthday —

1. Introduction

It is known that the closed graph theorem holds if E is barrelled and F is (Br)-complete [5, 71.
‘ollowing the work of Maclntosh [3], we define a class of spaces (called (Cr)-spaces) which
3 larger than the class of (Br)-complete spaces, and show that the closed graph theorem still
olds if E is barrelled and F a (Cr)-space. Also we show that the open mapping theorem holds
"E is a (C)-space and F barrelled, and that if the closed graph theorem holds for mappings of
1y barrelled space E into F, the space F is the (Cr)-space.

We use the notation and terminoclogy of Wilansky {8]. By a LCTVS, we mean a (real or com-
lex) locally convex topological vector space, always assumed separated. If [E, F] is a dual pair,
len we denote the weak topology on E by ¢(E, F). In particular, if £ is a LCTVS and E’ its
pological dual, then the associated weak topology on E is denoted by ¢(E, E”). The topology
(E’,E) on E’ is called the weak (rather than weak*) topology. Now let T be a linear mapping
om a LCTVS E to another F, then we call the linear mapping 7” from F’ into E’ adjoint of
e linear mapping 7T if 77(F/)CE’. A LCTVS E is called ultra bornolegical if it can be repre-
nted as the locally convex hull ;A,, (E.) of Banach spaces E, [2]. An ultra bornological space is
ith bornological and barrelled. Conversely, every sequentially complete bornological space is ultra-
irnological, all topologies mentioned are assumed to ke locally convex. Let E’ be the dual of a
STVS E. E/ will denote the point set E’ endowed with the topology ¢ (E’, E).

2. (Cr)-spaces

By analogy with the (B)-complete and (Br)-complete spaces, we define (C)-and (Cr)-spaces.
1e following definition is due to MacIntosh [3].

Definition. A LCTVS E is a (C)-space (resp. (Cr)-space) if every linear subspace (resp. dense
ear subspace) D of F,” whose intersection with each weakly bounded subset B of F’ is weakly
sed in B, is necessarily closed in F,’.

It is clear that every (C)-space is a (Cr)-space. Also, every (B)-complete (resp. (Br)-complete)

ace is a2 (C)-space (resp. (Cr)-space). In the definition we could require that the set B be
1vex.
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Proposition 2-1, Every barrelled (C)-space (resp. (Cr)-space) is (B —compiete (vesp. (Br;-com-
plete).
Proof. The properties of being equicontinuous and weakly bounded are equivalent for any

subset of the dual of the barrelled space.

Proposition 2-2. Let E be a closed subspace of the LCTVS F. If Fis a (C)-space or a
(Cr)-space, then E(under the induced topology) has the same property.
Proof. This can be proved by adapting the proof for (B)-complete and (Br)-complete spaces
in [7].
We shall need the following property of (C)-spaces.

Lemma 2-3, If E is a closed subspace of a (C)-space F, then F/E, in its quotient topology, i.
a (C)-space.

Proof. Let ¢ : E——F be a quotient map (=linear, continuous, open) where E is a (C)~space
Let S be a subspace of F, whose intersection with each weakly subset B of F’ is weakly close
in B. Then ¢ preserves the property of S. Then #(8) is weakly closed. Thus (¢)-{[#/(S)] i
weakly closed since ¢’ is weakly continuous. This set is S since ¢’ is one-to-one.

3. The closed graph theorem

A linear mapping T from a LCTVS E into another F such that T has closed graph is calle
simply a closed graph liner mapping.

Proposition 3-1. If T is a closed graph lineer mapping of a barrelled space E into a (Cr)
space F, then T is continuous.

Proof. Since T is closed, the domain D(T”) of T” is weakly dense in F’, and 7" is continuo
if D(7T”) is provided with the topology induced by ¢ (F’, F) and E’ with ¢ (E’, E). We claim th
the proposition follows if we can prove that D(7”) N B is weakly closed for every weakly bound:
subset B of F’. Indeed, since F is a (Cr)-space, we then conclude that D(7")=F", Therefore '
maps weakly relatively compact, and in particular equicontinuous subsets of F’ into weakly re!
tively compact subsets of E’. But o(E’, E)-compact subsets of E’ are equicontinuous and hence
follows that, given a neighborhood V of zero in F, there exists a neighborhocd U of zero in
such that T(U)CV, that is, T is continuous.

To prove that D(7T”) N B is weakly closed, let y” belong to the weakly closure of D(T")\B a
let ¥~ be a net in D(T’) N B converging weakly to 3. Then, by the weakly continuity of 7
its image Ty, is a bounded Cauchy net for o(E’, E). But weakly bounded subsets of E’ .
weakly relatively compact, and hence T”y,” converges to some point 2’ of E’. Since 77 is weal
closed in F’ X E’, this proves that y’&D(T”) B and hence D(7”) N B is weakly closed. The pr

of the proposition is complete.

Corollary 3-2. Suppose that E is ultra bornological and that F is a (Cr)-space. If T i
closed graph linear mapping of E into F, then T is continuous.
The following is the partial converse of the previous proposition.
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Proposition 3-3. Suppose that F satisfies the following requirement: There is a weakly dense
ubspace G of F such that
(a) BCF’ is weakly bounded if and only if B is o(F’,G)-bounded,
(b) weakly bounded subsets of F’ are relatively compact for o(F’,G). Then, if the closed
graph theorem holds for mappings of any barrelled space E inio F, the space F is a
(Cr)-space.

Proof. Let L be a weakly dense subspace of F’ such that LB is weakly closed for weakly
ounded subset B of F’.Consider G in the topclogy of uniform convergence on sets of the form
N B. It follows from (a) and (b) that G is barrelled and G’=L. If T is the natural injection of
7 into F, then clearly D(7T*)=L. Since T is continuous and hence closed in the topologies
(G,L) and ¢(F,L), we conclude that T is closed also in the stronger original topologies of G
nd F. Consequently T is continuous, and in particular D(T”) =F’. Hence L=F’, which completes
he proof.

There orz two kinds of open mapping theorems. If T is a linear mapping of E into F, we may
ippose either that 77 has closed graph or that T is continuous, and conclude, with suitable hy-
otheses on E and F, that T is open. Here we deal with the latter,

Proposition 3-4. Let E and F be two LCTVSs. Suppose that E is a (C)-space and F bar-
tlled, and that T is a continuous linear mapping of E inte F. Then T is open.

Proof. Since 7 is continuous, T-1(0) is closed. Let H=E/T-1(0). Then H is a (C)-space by
emma 2-3. Then we can write T=so¢) where ¢ is the canonical mapping of E onto A and s
a one-to-one continuols linear mapping of H onto F. The graph of s~!, which the same as the
raph of s, is therefore closed in FXH, and so s~! is continuous, Hence 7" is open.

We call the linear mapping 7" of the LCTVS E into the LCTVS F nearly open if T(U) is a
sighborhood in F for every neighborhood U in E, and nearly continuous if 7-'(V) is a neigh-

rthood in E for every neighborhood V' in F. When T is one-to-one and onto, clearly 7 is nearly
mtinuous if and only if its inverse is nearly open.

Proposition 3-5. Let T be a continuous cnd nearly open linear mapping of ¢ LCTVS E onto
LCTVS F. If E is a (C)-space, then so is F.
Proof. Let D be a subspace of F,” whose intersection with each weakly bounded subset B of
" is weakly closed in B, Let us examine the subspace 77(D) in E’. We have
"DYNU =T"({T(U)J? " D) for every meighborhood U of zero in E where U® is the polar
U,
Now [T(U)I° is the polar of a neighborhood of zero in F, so that [T(U)]°ND is compact in
F’, F). Hence T"(D)( U® is weakly compact for every U so that 7”(D) is closed in E’, It
llows that D is closed in F’, Hence F is a (C)-space.

Proposition 3-6. Let T be a one-to-one linear mapping of a LCTVS E onto a closed subspace

a LCTVS F. Suppose that T is open and nearly continuous. Then E is a (C)-space if F
is.
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Proof. Let us denote by F,, the space T(E). According to our assumption F, is closed in ¥ so
that F, is a (C)-space. Let us denote by g the linear mapping from F, onto E which is inverse
to T.

Clearly g is continuous and nearly open. It follows that g is open so that T is both open and
continuous. Hence E is both algebraically and topologically isomorphic to the (C)-space F,.
Thus E is a (C)-space. ’
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