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1. Introduction

The class § of functions f(z) which are regular and univalent in the open unit disk
\={z: |2|<1} each normalized by the conditions

S(©@ =0 and S (0) =1 (LD
as been studied intensively for about seventy years. A large and very successful portion of this
rork has dealt with subclasses of S characterized by some geometric property of f[AJ, the image
f A under f(z), which is expressible in analytic terms. The class of starlike functions in § is
ne of these [5]; f(z) is starlike with respect to the origin if the segment [0,f(2)] is in S[A.
or every z in A and this condition is equivalent to requiring that

zf’ () [f(2) (1.2)

ave a positive real part in A.
In this note the class of “disk-like” functions is introduced by placing restrictions on the behav-
ir of the imaginary part of (1.2) and a representation formula for these functioms is given in
rms of Robertson’s funtions which are starlike in one direction [6].

2. The class of disk-like functions

In the definition which follows, the notation g(¢£)&1(a,b) means that g(£) is strictly increasing
| the interval a<{t<(b. Similarly g(t)e | (a,4) means that g () is strictly decreasing in the in-
rrval a<t<b.

Definition 1. f(z) is regular in A, satisfies (1.1) and f(2)#0 for z in A unless z=0. f(2)
disk-like with respect to the origin in A, or f(z)<F, if and only if one of the following con-
itions is satisfied:
(i) There exists a constant p=p(f(z)) >0 and two functions
B (ry=06,(r ; f(2)),2=1,2; 0<0,(r)—0.(r)<2z;

ich that for p<lr<1

|[flre®) | | (0,(r),0.(r)) and |f(re®) | 1 0.(r),0,(r) +27). 2.1
(i) f(z) is regular in A, the closure of A, and there exist real numbers §, and 8,
<{0.—0,<2x, such that
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lfe) €| (60,,0,) and [f(e?) (&1 (0,,0,+27). (2.2)

Functions in F are not necessarily univalent; F’/ will denote the class of univalent members of
F, ie., F'=FNS. 6,(r) may be chosen so that 0<<f, (») <27 and a similar choice can be made
for 6, in (ii). Hereafter, unless otherwise implied, f(z) in F will satisfy part (i) of the definition
as this is no restriction on the development.

A subclass of F, the circularly symmetric functions was introduced earlier by Jenkins [3] and
has appeared in the recent investigations of Krzyz and Reade [4]. Tammi [8] has obtained distor-
tion theorems and coefficient bounds for functions defined in terms of restrictions on the quotient
(1.2).

A geometric interpretation of the conditions of Definition 1 may be given. Let f(z), p,8,(r) and
0.(r) satisfy (i), let |f(re®1®)|=R,(r) and |f(re?”)|=R,(r) and let C,, the image of |z|=r
under f(z), enclose a domain D, Then C, is contained entirely in the annulus R, (r) <|w|<R, ()
and C, intersects every circle |w|=R, R,(r)<{R<R,(r), exactly twice (perhaps in the same
peint) for p<lr<{1. If for Ry(r) <<R<R,(r) we let &, (r ; R) and @,(r ; R) be the arguments, chosen
to be unique by continuity, of the intersection of |w|=R with the arcs {f(re?) |, (r)<<6<0,(r)}
and {f(re?)|0,(r) <0<0, (r)+2x}, respectively, then D, contains the arc Re®,

D.(r ; R)<O<D,(r; R). It is clear that f(z) is not univalent in A if there exist » and R such
that @,(r ; R) —®,(r ; R)>2x for all choices of arguments. On the other hand f (z) is univalent in
A\ whenever 0<@;(r ; R)—&,(r ; R)<2r for all admissible r and R and appropriate 9,(r ; R)
and @;(r ; R), and conversely; hence f(z)&F”, or f(z) =z, if and only if every circle centered
at the origin meets f[A] in a single, non-overlapping arc or not at all. This gives rise to the
following observation which we will use; f(2) is univalent for |z|<r if the plane can be cut
from f(re?:”) to co by a curve which does not meet C, in any point other than f(re?:?),

Returning now to the definition, we see that for p<(r<{1, (2.1) can be written as

<0 for 6, (r)<0<0,(r)

O | flre
af )f(re ) >0 for 6,(r)<0<6,(r) +2rx, @.3)
or as
K <0 for 6,(r)<B<B,(r),
8| £ S o 00y 0t 0 2 @4
Because
Re{—a%—logf(z)} =Re[-%-log /()2 | = Re {,zj{( R {zjf( ®
for z=re®, (2.2) is equivalent to
re’f’ (re®) >0 it 6,(r)<<0<0,(r)
Im{ Sf(re?) } <0 if 8,(r)<0<6,(r) +27. @9
The last form upon normalization relates to functions starlike in one direction.
Letting
f(z)=z+‘Z:Jzakz‘, ZEN (2.6)
then
zf’ (2) —1=ax— (2a5—a,%) 22+ --- 2.7

I CON
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onsequently 4,40, otherwise (2.7) has a multiple zero which is a contradiction of (2.5). There-

re it is no restriction to assume that @, is real and positive, The above discussion yields the
llowing conclusions,

Theorem 1. f(z) has the form (2.6) and a,>0. f(z) is in F if and only if

o 51

starlike in the direction of the real axis.

It should be noticed that if a,7#0, then f(z) is not odd; this is consistent with the geometrical
terpretation given above. Consequently the identity function f(2) =2 is not in F. A modification
Definition 1 to admit simple monotonic rather than strictly monotenic functions in (2. 1) and (2. 2)
mits the identity function into F, in which case (2.7) is identically zero.

Making use of the fact that g(z) regular in A and normalized by (1.1) is convex in ome

cection if and omly if zg’(z) is starlike in one direction [6] we can write the last theorem in
other form.

Corollary, f(z):z—l—iabz", a, >0, is in F if and only if f(2) =2e%%* and g(z) is convex in
k=2
: direction of the imaginary axis.

This can be obtained directly from Theorem 1 or by observing that for z=re?, p<r<l1, (2.4)
equivalent to

Re 2 10g F®) )0 for 0000,

z />0 for 0,(r)<0<6,(r)+27. @8
nce,
log< Ji(:) ) =a,z-+ (aa— --a222~—) 224

convex in one direction.

3. A Univalent Subclass of F

‘or a fixed ¢, —w<¢p<w, we say that f(z) regular in A, or in A, and normalized by (1.1)
n F 4 if and only if f(z) is starlike in the direction with inclination ¢, That is, the line
zte’d, ¢t real, intersects C,, the image of }z|=r under f(z), for r near or equal to 1 exactly
ce. Evidently f(z) & F s whenever e~"#f(ze'?) is starlike in the direction of the real axis, and
versely. Consequently, there exist functions 7,(r ; f(2)) and 7,(r ; f(z)) such that for o<{r<1,
for r=1, and suitable choice of arguments, ¢<larg{f(re?¥)}<¢+n whenever

T (r 3 F(2) <6<z (r 5 f(2)

pt+r<larg{f(re?¥)}<¢-+2m
:never
T2 (r 5 f(2)) <O0<r:(r; f(2)) +2m.
irly o depends on f(2), 6=0(f(2)), and in the case r=1 it is assumed that f(z) is holomor-
Din A

'sing these ideas we may restate Theorem 1 in the following useful form.
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Theorem 2. f(2) has series representation {(2.6) and a.70. f{(z) is in F if and only if
o FO ez,
Jor d=Arg{a,1).

Choose a=Arg a,, where Arg denotes the principal argument, then
So(2) =esf(ze7®) =2+ |as| 2° + -
is in F, since membership in F is preserved under rotation. Therefore writing

laal [ L 1) =g (),

where g(z) is starlike in the direction of the real axis, yields, upon substitution, the relation

The last function is in F_, and —a=4¢,

Definition 2. f(z) and g(2), both in F, are similar if and only if
(r; f(@))=n(r; g(), k=1,2
for r=1 when f(z) and g(z) are regular in A and for ¢<r<1,
o=0(f(2) ; g(2)),
otherwise.

Let 7.(r)=1:(r; f(2)) =7:(r ; g(2)), k=1,2, then a geometric interpretation of similarity is that
for r near or equal to 1, f(re:¢?) and g(re:1(”) both lie on one ray of the line w=te*, ¢ real,
whereas f(re"s”) and g(rei2”) both lie on the complementary ray. #, is the class of functions
starlike in the direction of the real axis and any two typically-real functions, all of which are in

Fo, are similar.
Theorem 3. If

f(z):z—i—géa.z", a,70, and g(z) :a;’{ zf( (;) 1}
are similar and in 74, ¢=Arg{a,"'}, then f(z) is univalent in A,
To give a proof let 7,(r),k=1,2, and o be as in Definition 2 and the above paragraph. Sup-
pose furthermore that f(rei1¢”) and g(re:?) fall on the ray w=te*, >0, for d<r<{l. Then
for z=re’¥, 0<r<1 and appropriate choice of arguments

dplarglg(z)} <p+n for 7.(r) <O<z,(r)

and

¢+n<larg{g(z)}<p+2n for 7,(r) <0<z, (r)+27
or

0<arg{e g (z)} < when 7, (r) <8<z, (r)
and

nlarg{e~?g (2)}<2x when r,(r) <0<z, (r)+27.
This is equivalent to
Im {_gflz_)_} 7 (r) <0<z, (7)
F(@) 10, 7.(r) <0<z, (r) +27.
Consequently, |f(re#)| is strictly decreasing for r,(r) <0< 7,(r) and for a fixed r, p<Cr<{1, hence
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(re’®) cuts every circle |w|=R, |f(re )| <R<] f(re1”)] exactly once at a point Rei#,
<pu<l$p+m because f(z)&F 4 We see in the same way that every semicircle Res,
+a<lu<p+27 is intercepted only once. Therefore f(z) is univalent on |z|=r and is, for that
sason [5], univalent for |z|<(r. A similar argument covers the remaining cases.
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