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Abstract. In this paper, we give a result that maximum principles including Zorn’s
lemma can be regarded as various types of fixed point theorems. Our main application is
that the well-known ordering principles in nonlinear analysis including the Bishop-Phelps
argument and a number of its generalizations can be converted to fixed point theorems

and vice versa. Consequently, we obtain new results and unify many known results.

Recently, there have been appeared a number of ordering principles in nonlinear analysis includ-
ing the well-known Bishop-Phelps lemma [4] and its extensions given by Phelps [22], Ekeland
[13], Brpndsted [8], Brézis-Browder [7], Altman [3], Turinici [26], [28], and Kang-Park [15].
It is well-known that any maximum principle including Zorn’s lemma implies a fixed point result
on expanding maps f (that is, z<fz for all z).

In this paper, we begin with a metatheorem on the equivalency of maximum principles and
various types of fixed point results. We apply this to Zorn’s lemma and some useful forms of
the above-mentioned principles. Consequently, we obtain some new results and unify a number of

known results.
Let 2% denote the power set of a set X, and ~ the negation.
In the Zermelo-Fraenkel set theory with Axiom of Choice, we have the following.

Theorem 1. Let X be a set, A its nonempty subset, and G(x,y) a sentence formula for
,¥=X. Then the following are equivalent:

(1) There exists an element v=A such that G(v,w) for any we=X \ {v}.

(ii) If T: A——2% is a multimap such that for any z= A\ T(x), there exists a yeX \ {z}
satisfying ~ G(z,y), then T has a fixed element v=A, that is, v=T(v).

(iii) If f: A——X is a map such that for any z=A with z+fz, there exists a y=X\ {z}
atisfying ~ G(x,v), then f has a fized element v&<=A, that is, v=fv.

Gv) If T: A——2X\ (@) is a multimap such that ~ G(z,y) holds for any z&A and any
eT(x)\{z}, then T has a stationary element ve=A, that is, {v}=T(v).
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(v) If F is a family of maps f. A—>X satisfying ~ G(z, fz) for all xEA with z#fx,
then F has a common fixed element v&A, that is, v=fv for all f&F.
Proof. See [22].

A nonempty poset (partially crdered set) is said to be inductively crdered if
(A) every nonempty simply ordered subset has an upger bound.
We adopt the following form of Zorn's lemma.

Theorem. Let (P, <) be an inductively ordered set. Then for any a=P, there exists ¢
mazximal element v&P such that v<=S(a)={x=P|a<lx).

An equivalent form of Zorn's lemma is obtained by replacing (A) by the following ([2], [5].
[63) :

(B) every nonempty well-ordered subset has an upper bound.

As the first application of Theorem 1, we have the following:

Theorem 2. Let (P,<) be a poset, ac=P, and S(a)={x=P|a<z} satisfy (A) or (B). The
we have the following equivalent conditions hold:

(i) There exists a v=S(a) such that ~(@w<<w) for any we=P\ {v).

(i) If T :S(@)-—2% is a multimap such that

ve=S(@)\T(z), IysP\ {z} such that z<y,

then T has a fized element v=S(a).

Gii) If f: S(@)—P is a map such that z< fx for any x=8S(a), then f has a fized elemer
veS(a).

(v) If T:S(a)—2"\{@} is a multimap such that

vzeS(a), Vy&eT(x), <y holds,

then T has a stationary element v=S(a). .

(v) If F is a family of maps f: S(a)——P satisfying z<fz for all x=8(a), then F has

common fized element ve=S(a).

Note that (i) is equivalent to Zorn's lemma and (iii) due to Abian [17], Kneser [17] and Morc
anu [19] with constructive proofs.

Actually, (i)==>(iii) is a simple observation([9]). (iii)=> () is given in [1], (2], [19]. Kasaha
[16] obtained (i)==>(v). Also note that Proposition 1.6 of [24] is a consequence of (i)== (iii

A slightly different version of Theorem 2 can be stated as follows:

Theorem 3. Let (P, <) be a poset and ACP a nonempty subset. Then the followings ¢
equivalent,
(i) A has a maximal (minimal) element.
(i) If T: A—2F is a multimap such that
Ve A\T(z), IySA such that z<y (y<x),
ther T has a fixed element.
@ity If f: A——P is a map such that
Ve A, o#tfr —=2fz (fz<z) and fxc=A,
then f has a fixed element.
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(iv) If T . A—2P\{P) is a multimap such that
veeA, Vy&T(z)\ [z}, =<y(3<x) and y=A,
then T has a stationary element.
(v) If F is a family of maps f . A—— P satisfying
Ve A, ot fr=—=xfx (fz<lzx) and fz=A,
then F has a common fixed element.
Let (P, <) be a poset and f. P——P a selfmap. Then f is said to be isotone if f(z)<<Ff(y)
whenever <y,

Corollary 1. (Smithson [25]). Let (P, <) be a poset. Let e=P and F be a commuting family
of isotone maps of P(i.e., fog=gof for all f,gSF). Suppose that e< fe for all f&F and every
chain containing e has a least upper bound in P, then F has a common fized element.

Proof. Let A= {z&Ple<z and < fx for all f&F}. Then e=A and A%d. Let C be a chain
in A and z,=lub C. Then for any f&F and any z=C, =<z, implies z< fa<< fz,. So fz, is an
upper bound for C, whence z,< fz,. That is, £,&A. By Zorn’s lemma, A has a maximal element.

Let z=A and feF. If z#fz, eex\ fr. And for each g&F, x<gz implies
g(fx)=f(gz) <f(z). Thus fr=A. By (v) of Theorem 3, 7 has a common fixed eclement,

Corollary 1 generalizes Knaster-Tarski’s theorem (Theorem I.4.1. in [11]), which also can be
derived from (i) <= (iii) of Theorem 3. Also note that De Marr’s theorem[11] is a dual form of
Corollary 1.

Corollary 2. (Hoft and Hoft [147). Let (P, <) be a poset. Suppose that every nonempty chain
in P has a Lub, and a g.l.b. in P. If . P——P is an isotone map and there is an e=P such
that e and fe are comparable, then f has a fixed element.

Proof. This is an easy conmsequence of (i) &= (iii) of Theorem 3, by setting

A={zcP|z< fr and ez} if e<<fe or setting A={z&P)| fr<z and z<e¢} if fe<e,

A number of earlier fixed point results on posets may follow from Theorem 2 or Theorem 3.

In nonlinear analysis, there have appeared a number of constructive maximum principles. In
‘act, a set (X, <{) with a quasi-order <C (that is, reflexive and transitive) has some additional
itructure like a metric space, we have the following application of Theorem 1, which can be
-egarded a constructive “countably inductive” version of Zorn's lemma.

Theorem 4. Let (X,d,<) be a quasi-ordered metric space, and a=X such that

(1) any nondecreasing Cauchy sequence in S{a) has an upper bound, and

(2) for any x=S(a) and >0, there exists y=S (x) such that diam S(y) <.
Fhen (i)—(v) of Theorem 2 hold.

Proof. (i) By (2), since a=S(a), there exists a ¥,=S5(a) such that diam S$(y,)<1. Suppose
1+, ¥o=S (@) are chosen. Then there exists y,.1&=5(y,) such that diam S(y,.,)<1/(n+1). By
wduction, we obtain a nondecreasing Cauchy sequence {y.}. By (1), there exists a v&S(a) such
et ¥,<<v for all n. Since v=S(y,) and diam S(y,)—0 as n—co, we have y,—v. Since v<z
aplies v, z=S(y,), we have d(v, 2)<1/n for all n, and hence v==z.
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Note that an upper bound in (1) is actually a maximal element.

Theorem 4(i) is due to Turinici [26],[27], 28] in a more general form. For far reaching gen-
eralization of Theorem 4(i) is obtained recently by Kang and Park [15]. The essential features of
those generalizations imply well-known ordering principles of Altman [3], Brézis-Browder [7],
Brgndsted [8], and many others. Those principles unify a number of diverse results in nonlinear
analysis. Note also that (i)==>(iii) is given by Turinici [26].

The condition (2) is implied by

(2)’ any nondecreasing sequence {x,} is d-asymptotic (that is, lim inf, d(z,, Tn.r1) =0).

For complete metric spaces, the following types of maximum principles have been widely used,
e.g. the Banach contraction principle, the Bishop-Phelps lemma [4], and many of their extensions.

Theorem 5. Let (X,,d) be a metric space, ¢ . Xo—{—00} UR u.s.c., bounded above, and

k>0. Define a partial order < on X={r&X,|¢(x) >~—00} by

z<y iff kd(z,y)<d(y)—¢().
Let ac X, and suptose S(a) is <-ccmplete (that is, every nondecreasing Cauchy sequence con-
verges).

Then (1)—(v) of Theorem 2 hold.

Proof. (i) We claim that any nondecreasing sequence {x,} is Cauchy. In fact, if m=n, ther
kd{z,, x.) =¢(x,) —J(x,) implies ¢{z,)=¢(x,). Since ¢(z,) is nondecreasing and ¢ is bounded
above, ¢{x,) T¢ for some ccR. This shows that {z,} is Cauchy and hence satisfies (2)’. Since
S{a) is <-complete, if {z,} is in S(a), then zx,——z for some z=S(a). In fact, z=X, fo
¢(z)=lim sup, ¢{x,)=c since ¢ is u.s.c. Now we claim that z is an upper bound of {z,}. In fact

kd(x, z,) :];nlgl kd(z,, x,)
=lim sup ¢(z,) —¢(x.)
=a—¢(x,) <o (x) —p(z.).

Therefore, by Theorem 3, we have the conclusion.

In Theorem 5, since ¢ is u.s.c., S(a) is closed. Therefore, if (X, &) is complete, then clearl
S(a) is complete and hence <~complete. Moreover, if we chcose a=X such that ¢ (a)<supx ¢—*#
then S(a)={r&X|kd(z,a)<¢(2)~$(a)}C(z=X|g(x) >¢(a), d(x,a)=1}. This gives mor
accurate informations on whereabcuts of locations of maximal points or fixed points.

Theorem 5(i) is due to Phelps [23] and extends the well-known Bishop-Phelps argument i
[4]. Actually, Phelps proved (i) by using Zorm’s lemma.

A dual form of Theorem 5 can be stated as follows:

Theorem 6. Let (X,,d) be a metric space, ¢ :X, >R {+oo} lLs.c., bounded below, ar
k>0. Define a partial order < on X={z=X,|¢(x) <+ oo} by
z<y iff kd(x,y)<¢(x)~ ().
Let ac= X, and suppose S(a) is <-complete. Then (i)—(v) of Theorem 2 hold.
Proof. Take -¢ instead of ¢ and apply Theorem 5.
In Theorem 6, since ¢ is ls.c., S(a) is closed. Therefore, if (X,,d) is complete, then clear
S(a) is complete and hence <-complete. Moreover, if we chocse a=X such that ¢(e) <infid+
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then S(a) = {z&X| kd(z,a)<P(a) —P(x)}C {z=X|d(z)<d(a), d(z, a)<1]).

Theorem 6 is given in Park [20],[21]. Actually, Theorem 6(i) is the celebrated variational
principle of Ekeland [13], (ii) essentially due to Tuy [29], (v) to Kasahara [16], (iv) to Maschler-
Peleg [18], and (iii) to Caristi-Kirk-Browder [10], which includes the Banach contraction principle.

Applications cf Theorem 6 are numerous in a vast field of mathematical sciences (see, e.g., [13],

203, [21D).
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