Equivalent Formulations of Zorn's Lemma and Other Maximum Principles

by Sehie Park

Seoul National University, Seoul, Korea

- Dedicated to Professor Han Shick Park on his 60th birthday -

Abstract. In this paper, we give a result that maximum principles including Zorn's lemma can be regarded as various types of fixed point theorems. Our main application is that the well-known ordering principles in nonlinear analysis including the Bishop-Phelps argument and a number of its generalizations can be converted to fixed point theorems and vice versa. Consequently, we obtain new results and unify many known results.

Recently, there have been appeared a number of ordering principles in nonlinear analysis including the well-known Bishop-Phelps lemma [4] and its extensions given by Phelps [22], Ekeland [13], Brøndsted [8], Brézis-Browder [7], Altman [3], Turinici [26], [28], and Kang-Park [15]. It is well-known that any maximum principle including Zorn's lemma implies a fixed point result on expanding maps f (that is, $x \le fx$ for all x).

In this paper, we begin with a metatheorem on the equivalency of maximum principles and various types of fixed point results. We apply this to Zorn's lemma and some useful forms of the above-mentioned principles. Consequently, we obtain some new results and unify a number of known results.

Let 2^{x} denote the power set of a set X, and \sim the negation.

In the Zermelo-Fraenkel set theory with Axiom of Choice, we have the following.

Theorem 1. Let X be a set, A its nonempty subset, and G(x, y) a sentence formula for $x, y \in X$. Then the following are equivalent:

- (i) There exists an element $v \in A$ such that G(v, w) for any $w \in X \setminus \{v\}$.
- (ii) If $T: A \longrightarrow 2^X$ is a multimap such that for any $x \in A \setminus T(x)$, there exists a $y \in X \setminus \{x\}$ satisfying $\sim G(x, y)$, then T has a fixed element $v \in A$, that is, $v \in T(v)$.
- (iii) If $f: A \longrightarrow X$ is a map such that for any $x \in A$ with $x \neq fx$, there exists a $y \in X \setminus \{x\}$ satisfying $\sim G(x, y)$, then f has a fixed element $v \in A$, that is, v = fv.
- (iv) If $T: A \longrightarrow 2^x \setminus \{\phi\}$ is a multimap such that $\sim G(x,y)$ holds for any $x \in A$ and any $y \in T(x) \setminus \{x\}$, then T has a stationary element $v \in A$, that is, $\{v\} = T(v)$.

Partially supported by a grant from the Korea Science and Engineering Foundations, 1984~85.

20 S. H. Park

(v) If \mathcal{F} is a family of maps $f: A \longrightarrow X$ satisfying $\sim G(x, fx)$ for all $x \in A$ with $x \neq fx$, then \mathcal{F} has a common fixed element $v \in A$, that is, v = fv for all $f \in \mathcal{F}$.

Proof. See [22].

A nonempty poset (partially ordered set) is said to be inductively ordered if

(A) every nonempty simply ordered subset has an upper bound,

We adopt the following form of Zorn's lemma.

Theorem. Let (P, \leq) be an inductively ordered set. Then for any $a \in P$, there exists a maximal element $v \in P$ such that $v \in S(a) = \{x \in P \mid a \leq x\}$.

An equivalent form of Zorn's lemma is obtained by replacing (A) by the following ([2], [5], [6]):

(B) every nonempty well-ordered subset has an upper bound.

As the first application of Theorem 1, we have the following:

Theorem 2. Let (P, \leq) be a poset, $a \in P$, and $S(a) = \{x \in P \mid a \leq x\}$ satisfy (A) or (B). The we have the following equivalent conditions hold:

- (i) There exists a $v \in S(a)$ such that $\sim (v \le w)$ for any $w \in P \setminus \{v\}$.
- (ii) If $T: S(a) \longrightarrow 2^p$ is a multimap such that

$$\forall x \in S(a) \setminus T(x)$$
, $\exists y \in P \setminus \{x\}$ such that $x \leq y$,

then T has a fixed element $v \in S(a)$.

- (iii) If $f: S(a) \longrightarrow P$ is a map such that $x \le fx$ for any $x \in S(a)$, then f has a fixed elemen $v \in S(a)$.
 - (iv) If $T: S(a) \longrightarrow 2^p \setminus \{\phi\}$ is a multimap such that

$$\forall x \in S(a), \forall y \in T(x), x \leq y \text{ holds},$$

then T has a stationary element $v \in S(a)$.

(v) If \mathcal{F} is a family of maps $f: S(a) \longrightarrow P$ satisfying $x \leq fx$ for all $x \in S(a)$, then \mathcal{F} has common fixed element $v \in S(a)$.

Note that (i) is equivalent to Zorn's lemma and (iii) due to Abian [1], Kneser [17] and Morc anu [19] with constructive proofs.

Actually, (i) \Longrightarrow (iii) is a simple observation([9]). (iii) \Longrightarrow (i) is given in [1], [2], [19]. Kasaha [16] obtained (i) \Longrightarrow (v). Also note that Proposition 1.6 of [24] is a consequence of (i) \Longrightarrow (iii)

A slightly different version of Theorem 2 can be stated as follows:

Theorem 3. Let (P, \leq) be a poset and $A \subset P$ a nonempty subset. Then the followings a equivalent.

- (i) A has a maximal (minimal) element.
- (ii) If $T: A \longrightarrow 2^p$ is a multimap such that

$$\forall x \in A \setminus T(x)$$
, $\exists y \in A$ such that $x < y (y < x)$,

then T has a fixed element.

(iii) If $f: A \longrightarrow P$ is a map such that

$$\forall x \in A, x \neq fx \Longrightarrow x < fx (fx < x) \text{ and } fx \in A,$$

then f has a fixed element.

(iv) If $T: A \longrightarrow 2^p \setminus \{\phi\}$ is a multimap such that

$$\forall x \in A, \ \forall y \in T(x) \setminus \{x\}, \ x < y(y < x) \ and \ y \in A,$$

then T has a stationary element.

(v) If \mathcal{F} is a family of maps $f: A \longrightarrow P$ satisfying

$$\forall x \in A, x \neq fx \Longrightarrow x < fx (fx < x) \text{ and } fx \in A,$$

then F has a common fixed element.

Let (P, \leq) be a poset and $f: P \longrightarrow P$ a selfmap. Then f is said to be *isotone* if $f(x) \leq f(y)$ whenever x < y.

Corollary 1. (Smithson [25]). Let (P, \leq) be a poset. Let $e \in P$ and \mathcal{F} be a commuting family of isotone maps of $P(i.e., f \circ g \cong g \circ f$ for all $f, g \in \mathcal{F}$). Suppose that $e \leq f e$ for all $f \in \mathcal{F}$ and every chain containing e has a least upper bound in P, then \mathcal{F} has a common fixed element.

Proof. Let $A = \{x \in P \mid e \leq x \text{ and } x \leq fx \text{ for all } f \in \mathcal{F}\}$. Then $e \in A$ and $A \neq \phi$. Let C be a chain in A and $x_0 = \text{lub } C$. Then for any $f \in \mathcal{F}$ and any $x \in C$, $x \leq x_0$ implies $x \leq fx \leq fx_0$. So fx_0 is an upper bound for C, whence $x_0 \leq fx_0$. That is, $x_0 \in A$. By Zorn's lemma, A has a maximal element. Let $x \in A$ and $f \in \mathcal{F}$. If $x \neq fx$, $e \in x \setminus fx$. And for each $g \in \mathcal{F}$, x < gx implies $g(fx) = f(gx) \leq f(x)$. Thus $fx \in A$. By (v) of Theorem 3, \mathcal{F} has a common fixed element.

Corollary 1 generalizes Knaster-Tarski's theorem (Theorem I. 4. 1. in [11]), which also can be derived from (i) \iff (iii) of Theorem 3. Also note that De Marr's theorem[11] is a dual form of Corollary 1.

Corollary 2. (Höft and Höft [14]). Let (P, \leq) be a poset. Suppose that every nonempty chain P has a l.u.b. and a g.l.b. in P. If $f: P \longrightarrow P$ is an isotone map and there is an $e \in P$ such that e and fe are comparable, then f has a fixed element.

Proof. This is an easy consequence of (i) \iff (iii) of Theorem 3, by setting

$$A = \{x \in P \mid x \le fx \text{ and } e \le x\}$$
 if $e \le fe$ or setting $A = \{x \in P \mid fx \le x \text{ and } x \le e\}$ if $fe \le e$.

A number of earlier fixed point results on posets may follow from Theorem 2 or Theorem 3. In nonlinear analysis, there have appeared a number of constructive maximum principles. In fact, a set (X, \leq) with a quasi-order \leq (that is, reflexive and transitive) has some additional structure like a metric space, we have the following application of Theorem 1, which can be regarded a constructive "countably inductive" version of Zorn's lemma.

Theorem 4. Let (X, d, \leq) be a quasi-ordered metric space, and $a \in X$ such that

- (1) any nondecreasing Cauchy sequence in S(a) has an upper bound, and
- (2) for any $x \in S(a)$ and $\varepsilon > 0$, there exists $y \in S(x)$ such that diam $S(y) < \varepsilon$. Then (i)—(v) of Theorem 2 hold.

Proof. (i) By (2), since $a \in S(a)$, there exists a $y_1 \in S(a)$ such that diam $S(y_1) < 1$. Suppose $1, \dots, y_n \in S(a)$ are chosen. Then there exists $y_{n+1} \in S(y_n)$ such that diam $S(y_{n+1}) < 1/(n+1)$. By iduction, we obtain a nondecreasing Cauchy sequence $\{y_n\}$. By (1), there exists a $v \in S(a)$ such that $y_n \le v$ for all n. Since $v \in S(y_n)$ and diam $S(y_n) \to 0$ as $n \to \infty$, we have $y_n \to v$. Since $v \le z$ applies $v, z \in S(y_n)$, we have d(v, z) < 1/n for all n, and hence v = z.

22 S. H. Park

Note that an upper bound in (1) is actually a maximal element.

Theorem 4(i) is due to Turinici [26], [27], [28] in a more general form. For far reaching generalization of Theorem 4(i) is obtained recently by Kang and Park [15]. The essential features of those generalizations imply well-known ordering principles of Altman [3], Brézis-Browder [7], Br ϕ ndsted [8], and many others. Those principles unify a number of diverse results in nonlinear analysis. Note also that (i) \Longrightarrow (iii) is given by Turinici [26].

The condition (2) is implied by

(2)' any nondecreasing sequence $\{x_n\}$ is d-asymptotic (that is, $\lim \inf_n d(x_n, x_{n+1}) = 0$).

For complete metric spaces, the following types of maximum principles have been widely used, e.g. the Banach contraction principle, the Bishop-Phelps lemma [47], and many of their extensions.

Theorem 5. Let (X_0, d) be a metric space, $\phi: X_0 \longrightarrow \{-\infty\} \cup \mathbb{R}$ u.s.c., bounded above, and k>0. Define a partial order \leq on $X=\{x\in X_0|\phi(x)>-\infty\}$ by

$$x \le y \text{ iff } kd(x,y) \le \phi(y) - \phi(x).$$

Let $a \in X$, and suppose S(a) is \leq -complete (that is, every nondecreasing Cauchy sequence converges).

Then (i)-(v) of Theorem 2 hold.

Proof. (i) We claim that any nondecreasing sequence $\{x_n\}$ is Cauchy. In fact, if $m \ge n$, then $kd(x_n, x_m) \le \phi(x_m) - \phi(x_n)$ implies $\phi(x_m) \ge \phi(x_n)$. Since $\phi(x_n)$ is nondecreasing and ϕ is bounded above, $\phi(x_n) \uparrow c$ for some $c \in \mathbb{R}$. This shows that $\{x_n\}$ is Cauchy and hence satisfies (2)'. Since S(a) is \le -complete, if $\{x_n\}$ is in S(a), then $x_n \longrightarrow x$ for some $x \in S(a)$. In fact, $x \in X$, for $\phi(x) \ge \lim_{n \to \infty} \phi(x_n) = c$ since ϕ is u.s.c. Now we claim that x is an upper bound of $\{x_n\}$. In fact

$$kd(x, x_n) = \lim_{m \ge n} kd(x_m, x_n)$$

$$\leq \lim_{m \ge n} \sup \phi(x_m) - \phi(x_n)$$

$$= a - \phi(x_n) \leq \phi(x) - \phi(x_n).$$

Therefore, by Theorem 3, we have the conclusion.

In Theorem 5, since ϕ is u.s.c., S(a) is closed. Therefore, if (X_0, d) is complete, then clearl S(a) is complete and hence \leq -complete. Moreover, if we choose $a \in X$ such that $\phi(a) \leq \sup_X \phi - k$ then $S(a) = \{x \in X \mid kd(x, a) \leq \phi(x) - \phi(a)\} \subset \{x \in X \mid \phi(x) > \phi(a), d(x, a) \leq 1\}$. This gives mor accurate informations on whereabcuts of locations of maximal points or fixed points.

Theorem 5(i) is due to Phelps [23] and extends the well-known Bishop-Phelps argument i [4]. Actually, Phelps proved (i) by using Zorn's lemma.

A dual form of Theorem 5 can be stated as follows:

Theorem 6. Let (X_0, d) be a metric space, $\phi: X_0 \to \mathbb{R} \cup \{+\infty\}$ l.s.c., bounded below, an k>0. Define a partial order \leq on $X=\{x\in X_0 \mid \phi(x)<+\infty\}$ by

$$x \le y$$
 iff $kd(x, y) \le \phi(x) - \phi(y)$.

Let $a \in X$, and suppose S(a) is \leq -complete. Then (i) -(v) of Theorem 2 hold.

Proof. Take $-\phi$ instead of ϕ and apply Theorem 5.

In Theorem 6, since ϕ is l.s.c., S(a) is closed. Therefore, if (X_0, d) is complete, then clear S(a) is complete and hence \leq -complete. Moreover, if we choose $a \in X$ such that $\phi(a) \leq \inf_X \phi + 1$

then $S(a) = \{x \in X | kd(x, a) \le \phi(a) - \phi(x)\} \subset \{x \in X | \phi(x) < \phi(a), d(x, a) \le 1\}.$

Theorem 6 is given in Park [20], [21]. Actually, Theorem 6(i) is the celebrated variational principle of Ekeland [13], (ii) essentially due to Tuy [29], (v) to Kasahara [16], (iv) to Maschler-Peleg [18], and (iii) to Caristi-Kirk-Browder [10], which includes the Banach contraction principle. Applications of Theorem 6 are numerous in a vast field of mathematical sciences (see, e.g., [13], [20], [21]).

References

- 1. A. Abian, Fixed points theorems of the mappings of partially ordered sets, Rend. Circ. Mat. Palermo, 20(1971), 139~142.
- 2. _____, The theory of sets and transfinite arithmetic, W.B.Saunders Co., 1965.
- 3. M.Altman, A generalization of the Brézis-Browder principle on ordered sets, Nonlinear Anal. TMA 6(1982), 157~165.
- 4. E.Bishop and R.R.Phelps, The support functionals of a convex set, Proc. Symp. Pure Math. VII. Convexity, Amer. Math. Soc. (1963), 27~36.
- 5. N.Bourbaki, Sur le théorème de Zorn, Arch. Math. 2(1949~50), 434~437.
- 6. _____, Théorie des ensembles, Chap. III, 1956.
- 7. H.Brézis and F.E.Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21(1976), 355~364.
- 8. A.Brφrdsted, On a lemma of Bishop and Phelps, Pacific J. Math. 55(1974), 335~341.
- 9. _____, Fixed points and partial orders, Proc. Amer. Math. Soc. 60(1976), 365~ 366.
- 10. J.Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215(1976), 241~251.
- 11. J. Dugundji and A. Granas, Fixed point theory, V.I, Warszawa, 1982.
- 12. N.Dunford and J.Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- 13. I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Ser. (N.S.) 1(1979), 443~473.
- 14. H.Höft and M.Höft, Some fixed point theorems for partially ordered sets, Can. J. Math. 38 (1976), 992~997.
- 15. B.Kang and S.Park, On generalized ordering principles in nonlinear analysis, MSRI-Korea Rep. Ser. 10(1984), preprint.
- 16. S.Kasahara, On fixed points in partially ordered sets and Kirk-Caristi theorem, Math. Sem. Notes Kobe Univ. 3(1975), 229~232.
- 17. H.Kneser, Eine direkte Ableitung des Zornschen Lemmas ans dem Auswahlaxiam, Math. Z. 53(1950), 110~113.
- 18. M.Maschler and B.Peleg, Stable sets and stable points of set-valued dynamic systems, SIAM J.Control 14(1976), 985~995.
- 19. M. Moroianu, On a theorem of Bourbaki, Rend. Circ. Mat. Palermo 31 (1982), 401~403.

24

- 20. S.Park, Equivalent formulations of Ekeland's variational principle and their applications, MSRI-Korea Pub. 1(1986), 55~68.
- 21. _____, Some applications of Ekeland's variational principle to fixed point theory, in "Approximation Theory and Applications" (ed. by S.P.Singh), Res. Notes Math. 133(1985), 159~172.
- 22. ____, Countable compactness. l.s.c. functions, and fixed points, J. Korean Math. Soc. 23(1986), 61~66.
- 23. R.R.Phelps, Weak* support points of convex sets in E*, Israel J. Math. 2(1964), 177~182.
- 24. R.E.Smithson, Fixed points of order preserving multifunctions, Proc. Amer. Math.Soc. 24 (1971), 304~310.
- 25. _____, Fixed points in partially ordered sets, Pacific J. Math. 45(1973), 363~367
- 26. M. Turinici, Maximal elements in a class of order complete metric spaces, Math. Japonic 25 (1980), 511~517.
- 27. _____, Differential inequalities on abstract metric spaces, Funkcialaj Ekvacioj 2 (1982), 227~242.
- 28. _____, A generalization of Altman's ordering principle, Proc. Amer. Math. Soc 90(1984), 128~132.
- 29. H.Tuy, A fixed point theorem involving a hybrid inwardness contraction condition, Math Nachr. 102(1981), 271~275.