Redox Reaction Mechanisms of Thorium (IV) Complexes with Crown Ethers in Dimethylsulfoxide

디메틸술폭시드용매중에서 Thorium (IV)-Crown Ether 착물의 산화-환원 반응메카니즘

  • Jung, Hak-Jin (Department of Chemistry, College of Natural Science, Chosun University) ;
  • Jung, Oh-Jin (Department of Chemistry, College of Natural Science, Chosun University) ;
  • Suh, Hyouck-Choon (Department of Chemistry, Koonsan College)
  • 정학진 (朝鮮大學校 自然科學大學 化學科) ;
  • 정오진 (朝鮮大學校 自然科學大學 化學科) ;
  • 서혁춘 (群山大學 化學科)
  • Published : 1987.06.20

Abstract

The electrical conductances for the thorium (IV) complexes with crown ethers have been measured in DMSO, and water solvents, and the oxidation-reduction reaction mechanisms, electron number and diffusion coefficients in the reversible reduction process have been examined by polarography and cyclic voltammography. The dissociation mole ratio of $Th^{4+}$ and nitrate ion are 1:1 and in aprotic solvent, and 1:4 in protic solvent like as water. The limiting molar conductances of all complexes in aprotic solvent have been found to be in the range of $92.2{\times}159$ $ohm^{-1}cm^2mol^{-1}$. In aprotic solvent, DMSO, the reduction of each complex is reversible by one electron reduction of one step, and the range of diffusion coefficients is obserbed to be $5.83\;10^{-6}{\sim}6.90{\times}10^{-6}$. The complexes which have reduction step were hydrolyzed above at 1.8volt with reference saturated calomel electrode, generating the hydrogen gas. The reaction mechanisms of thorium (IV)-crown ether complexes appear as follows. ${Th_m(IV)L_n(H_2O)_x(NO_3)_{4y}}_=^{DMSO} {\overline{{Th_m(IV)L_n(H_2O)_x(NO_3)_{4y-1}}}^+ + NO_3-$

DMSO와 $H_2O$용매 중에서 결합구조가 밝혀진 동공의 크기를 달리한 토륨(IV) 착물들의 전기전도도를 측정하여 해리현상과 전해질의 행동을 알아 보고 DMSO용매중에서 polarography와 cyclic voltammography적 거동을 조사하여 합성착물의 산화환원반응 메카니즘, 가역성을 알아 보고 환원과정에 관여하는 전자수 및 착물의 확산계수를 계산하였다. 그 결과 반양성자성 용매에서 모든 착물들은 1:1전해질로, 물에서는 1:4전해질로 각각 행동하고, DMSO용매중에서 각 착물의 환원반응은 1전자 1단계의 환원반응으로 가역적이며 확산계수는 착물종에 따라 $5.831{\times}10^{-6}{\sim}6.900{\times}10^{-6}$이었다. 그리고 모든 착물의 물분자는 -1.8V(대조전극, SCE)이상에서 분해를 일으켜 수소기체를 발생한다.

Keywords

References

  1. J. Am. Chem. Soc. v.79 I. M. Kolthoff;J. F. Coezee
  2. J. Am. Chem. Soc. v.79 I. M. Kolthoff;J. F. Coezee
  3. Collection Czechoslov. Chem. Comm. v.3 J. Heyrovsky;Nejedly
  4. Chem. News. v.142 J. Heyrovsky;Nejedly
  5. Review of Polarography v.15 Kazuyoshi Hagiwara
  6. Review of Polarography v.7 no.4 Seizo Misumi
  7. Review of Polarography v.7 no.4 Shiro Yoshizawa
  8. Review of Polarography v.12 M. Shinagawa;H. Nezu
  9. Inorg. Chem. v.23 C. H. Braunstein;A. D. Baker;T. C. Thomas;H. D. Gafney
  10. Inorg. Chem. v.24 K. M. Kodish;C. L. Yao;J. E. Anderson;P. Cocolios
  11. J. Am. Chem. Soc. v.101 R. R. Gagne;R. P. Kreh;J. A. Dodge
  12. Inorg. Chem. v.23 R. L. Lintvedt;G. Ranger;B. A. Schoenfelner
  13. Inorg. Chem. v.23 R. M. Nielson;S. Wherland
  14. Coord. Chem. Rev. v.7 W. J. Geary
  15. Electrochemical Methods A. J. Bard;L. R. Faulkner
  16. Review of Polarography v.13 Toyoshi Nagai;Shigeo Tsurubo
  17. Organic Polarographic Analysis P. Zuman