실리카 및 제올라이트의 전자구조에 대한 CNDO / 2 분자궤도론적 계산 Ⅰ. CO 흡착

CNDO / 2 MO Calculations for the Electronic Structure of Silicas and Zeolites Ⅰ. Adsorbed Carbon Monoxide

  • 김종택 (경북대학교 공과대학 공업화학과) ;
  • 박두선 (경북대학교 공과대학 공업화학과)
  • Jong Taik Kim (Department of Industrial Chemistry, Kyungpook National University) ;
  • Doo Seon Park (Department of Industrial Chemistry, Kyungpook National University)
  • 발행 : 1987.02.20

초록

실리카 및 제올라이트의 OH기 또는 교환된 양이온과 CO분자간의 상호작용과 전자구조를 살펴보기 위하여 CNDO/2계산을 행하였다. 실리카의 OH기와 CO분자간의 상호작용에너지는 약 12kcal/mol이었고, 그 결합거리, R(O-H${\cdots}$C)는 2.6${\AA}$이었다. 여러가지의 양이온과 CO분자와의 결합강도는 $H^+ < Na^+ < Li^+$의 순이었는데, 그것은 양이온의 정전기적 장의 세기와 일치하였다. 또한 OH기나 양이온과 결합하고 있는 CO분자의 결합차수는 OH-CO type의 경우를 제외하고는 모두 증가하였다. 제올라이트에 있는 양이온을 떼어내는데 필요한 에너지는 $H^+ > Li^+ > Na^+$의 순이었으며, 이것은 제올라이트의 골격으로부터 양이온으로 이동되는 전하의 양과 관계가 있다.

The CNDO/2 method has been used to calculate the electronic structure of the zeolites and silicas, and to investigate the interaction of CO molecules with the OH groups or the exchanged cation in the zeolites. The interaction energies of CO molecules with OH groups in silica were ca. 12kcal/mol, the bond distance, R(O-H${\cdots}$C) was 2.6${\AA}$. The strength of bond between CO molecules and various types of cations in the zeolites was in the following order: $H^+ < Na^+ < Li^+$, i.e., this increased with increasing electrostatic field of cations. The bond orders of CO molecules interacting with the OH groups or the cations increased but for the OH-OC type interaction. The theoretical decationization energies of exchanged cations in the zeolites decreased in the order: $H^+ > Li^+ > Na^+$. And these energies depended on the amount of charge density transfered from the skeleton to the cations in order to compensate its negative charge.

키워드

참고문헌

  1. Infrared Spectra of Surface Compounds A.V. Kiselev;V.I. Lygin
  2. Zeolite Molecular Sieves D.W. Breck
  3. J. Phys. Chem. v.80 B.A. Morrow;I.A. Cody
  4. J. Phys. Chem. v.67 J. Bertsch;H.W. Habgood
  5. J.C.S. Faraday Trans I v.69 P.A. Jacobs;J.B. Uytterhoeven(et al.)
  6. J. Mol. Catal. v.26 S. Beran
  7. J. Phys. Chem. v.88 P. Geerlings;N. Tariel;A. Botrel;R. Lissillour;W.J. Mortier
  8. J. Phys. Chem. v.88 J. Sauer;C. Morgeneyer;K.P. Schroder
  9. J. Phys. Chem. v.89 S. Beran
  10. J. Mol. Catal. v.6 J. Dubsky;S. Beran;V. Bosacek
  11. J. Phys. Chem. v.74 D.H. Olson
  12. Approximate Molecular Orbital Theory J.A. Pople;D.L. Beveridge
  13. J. Phys. Chem. v.83 S. Beran;J. Dubsky
  14. J. Chem. Phys. v.43 J.A. Pople;D.P. Santry;G.A. Segal
  15. J.C.S. Faraday Trans. I v.78 K. Takahashi
  16. J. Phys. Chem. v.70 J.B. Peri
  17. J. Phys. Chem. v.85 S. Beran;P. Jiru;B. Wichterlova
  18. J. Phys. Chem. v.83 W.J. Mortier;P. Geerlings;C. van Alsenoy;H.P. Figeys
  19. J. Phys. Chem. v.87 S. Beran
  20. J. Phys. Chem. v.85 P. Politzer;C.W. Kammeyer;S.J. Bauer;W.L. Hedges
  21. J. Chem. Phys. v.46 I. Ozier;P. Yi;A. Khosla;N.F. Ramsey
  22. Tetrahedron v.24 K. Wiberg
  23. J. Kor. Chem. Soc. v.31 J.T. Kim;D.S. Park
  24. Advanced Inorganic Chemistry F.A. Cotton;G. Wilkinson
  25. Am. J. Phys. v.48 K. Morokuma;L. Pedersen
  26. Acta. Crystallogr., Sect. B v.32 Y. Le Page;G. Donnay
  27. J. Amer. Chem. Soc. v.102 H. Oberhammer;J.E. Boggs
  28. Trans. Faraday Soc. v.57 R.M. Barrer;S. Wasilewsky