Table 1. Preparation of N-Boc and N-Cbz Carbamates from Amines^a

	N-Boc carbamate		N-Cbz carbamate	
amine	time, h	yield, %	time, h	yield, %
C ₆ H ₅ CH ₂ NH ₂	0.1	90	0.1	96
CH3NHCH2CH2OH	0.1	96		
CH ₃ (CH ₂) ₂ NH ₂	0.1	97		
(CH ₃) ₂ CHNHCH(CH ₃) ₂	30	92	2	88
C ₆ H ₅ NH ₂	5.5	94	0.5	98
Щин	84	72	3	86

^aThe reaction was carried out with equimolar amounts of an amine and the reagent in methylene chloride at room temperature.

Table 2.	Preparation	of N-Boc and N	-Çbz /	Amino Acid e ^x	
----------	-------------	----------------	--------	----------------------------------	--

amino acid	method ^b	N-Boc amino acid		N-Cbz amino acid	
		time, h	yield, % ^c	time, h	yield, % ^c
Pro	A	0.5	76	0.2	96
	В	10	97		
Ala	А	0.5	66	0.2	97
	В	10	82		
Тгу	А	0.5	60	0.2	9 5
-	В	10	93		
Val	А	0.5	62	0.2	97
	В	10	96		
Leu	А	0.5	64	0.2	86
	В	10	80		
Met	А	0.5	70	0.2	90
	В	10	80		
Phe	А			0.2	96
	В	10	85		

^aThe reaction was carried out with equimolar amounts of an amino acid, the reagent, and triethylamine. ^bMethod A: in aqueous DMF at room temperature. Method B: in p-dioxane at 80°C. Isolated yields. though the reaction required 10 h at 80°C for completion of the reaction. Under the present conditions, several amino acids were cleanly converted into the corresponding N-Boc amino acids as shown in Table 2. However, benzyloxycarbonylation of amino acids occurred cleanly and rapidly in aqueous N,N'-dimethylformamide and the reaction was generally complete 10 min at room temperature. The identities of N-Boc and N-Cbz amino acids were confirmed by comparison NMR, mp, and $[a]_D$ values with reported data.

Acknowledgment. This research was supported by Korea Science and Engineering Foundation.

References

- J. F. W. McOmie, "Protective Groups in Organic Chemistry," Plenum Press, London (1973); T. W. Greene, "Protective Groups in Organic Synthesis," Wiley, New York (1981); E. Gross and J. Meienhofer, "The Peptides," Academic Press, New York (1981), Vol. 3.
- A. R. Choppin and J. W. Rogers, J. Am. Chem. Soc., 70, 2967 (1948).
- 3. Y. Kita, J. Harata, H. Yasuda, K. Fukunaga, Y. Shirouchi, and Y. Tamura, J. Org. Chem., 47, 2697 (1982) and references cited therein.
- S. Kim and J. I. Lee, Chem. Lett., 237 (1984); S. Kim, J. I. Lee, and K. Y. Yi, Bull. Chem. Soc. Jpn., 58, 3570 (1985).
- S. Kim and H. Chang, Chem. Commun., 1357 (1983); S. Kim and H. Chang, Bull. Korean Chem. Soc., 7, 70 (1986).
- 6. A. R. Katritzky, J. Chem. Soc., 191 (1957).
- 7. mp 104°C; NMR(CDCl)₃ δ 1.68 (s, 1H), 6.20-6.48 (m, 1H), 6.75-6.90 (m, 1H), 7.36-7.62 (m, 2H); IR(KBr) 1825, 1675 cm⁻¹. Calcd for C₁₀H₁₃NO₄: C, 56.89; H, 6.21; N, 6.63. Found: C, 56.8; H, 6.3; N, 6.6.
- 8. mp 99°C; NMR(CDCl₃) δ 5.34 (s, 2H), 5.90-6.20 (m, 1H), 6.48-7.71 (m, 1H), 7.20-7.45 (m, 7H); IR(KBr) 1800, 1685 cm⁻¹. Calcd for C₁₃H₁₁NO₄: C, 63.71; H, 4.52; N, 5.76. Found: C, 63.5; H, 4.7; N, 5.7.

A Simple Approach to the Valerane Skeleton

Jong-Gab Jun*

Department of Chemistry, Hallym University, Chunchon 200

Bradford P. Mundy

Department of Chemistry, Montana State University, Bozeman, MT 59717, U.S.A. Received August 21, 1987

The carbon framework of the valerane sesquiterpenes provides stereochemically interesting *cis*-dimethyl substitution around the ring junction.¹ The parent compound is obtained by the reduction of 1-valeranone which isolated from *Valeriana officinalis*.² As a continuation of our studies using dianion methodology³ we explored the stereospecific formation of the parent, valerane, (1).

Our approach is different from that recently reported by Garratt⁴ in the timing of incorporation of the isopropyl group. Hydrogenolysis of the C-S bond of 12-thia[4.4.3]propell-3-

ene(2) by using Raney-nickel whose synthesis was reported in the previous article⁵, provided the required *cis*-9, 10-dimethyl decalin-2-ene-(3) in 73% yield. The introduction of the isopropyl group was achieved according to the sequences shown in Figure 1. Hydroboration of the alkene bond of 3

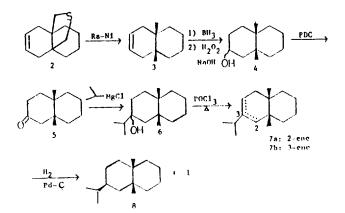


Figure 1. The synthesis of valerane.

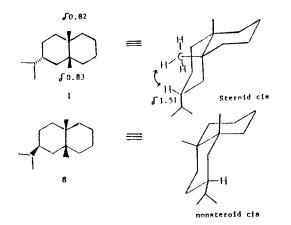


Figure 2. Conformational assignment for valerane.

gave the alcohol 4 in 95% yield. Oxidation of 4 with PDC in methylene chloride for 24 hours gave the corresponding ketone(5) in 93% conversion. Treatment of 5 with isopropylmagnesium chloride in ether gave an epimeric mixture of alcohol 6 in 88% yield. Dehydration of 6 with phosphorous oxychloride in pyridine at 90°C gave a 73% yield of a 45:55 mixture of 7a and 7b respectively. Catalytic reduction of these olefinic mixture by using hydrogenator at 60 psi for 12 hours with palladium on carbon in hexane gave a 45:55 mixture of the isomeric valeranes in 80% yield.

Rao⁶ and Baldwin⁷ synthesized 1 and 8 as a 40:60 ratio and the reported spectral data is identical with ours.⁸. In view of the flexible nature of the *cis* decalin, valerane could exist in at least two interchangeable all-chair conformations such as the steroid *cis* conformation or the nonsteroid *cis* conformation (Figure 2). Hartshorn⁹ and Hikino¹⁰ proved that valeranon exists in the steroid *cis* conformation from a study of its optical rotatory dispersion. Also, we proved the conformation of 1 and 8 by a NOE experiment as follows: Irradition of the 0.83ppm resonance in 1 gave a positive NOE effect at 1.51 ppm, but irradition of 0.84 and 0.79 ppm in 8 did not give any positive NOE effect, which indicates 1 is in the steroid *cis* conformation and 8 is in the nonsteroid *cis* conformation.

Acknowledgement. The partial support of the Montana Agricultural Experimental Station is gratefully acknowledged.

References

- 1. G. H. Posner, J. J. Sterling, C. E. Whitten, C. M. Lentz, and D. J. Brunelle, J. Am. Chem. Soc., 97, 107 (1975).
- 2. J. Kripinsky, Collect. Czech. Chem. Commun., 27, 2638 (1962).
- D. Wilkening and B. P. Mundy, Synth. Commun., 14, 227 (1984); D. Wilkening and B. P. Mundy, *ibid*, 13, 959 (1983).
- P. J. Garratt, M. Pielke and J. R. Porter, Tetrahedron Lett., 589 (1987).
- J. -G. Jun and B. P. Mundy, Bull. Korean Chem. Soc., 8, 310 (1987).
- 6. P. N. Rao, J. Org. Chem., 36, 2426 (1971).
- 7. S. W. Baldwin and R. E. Gawley, Tetrahedron Lett., 3969 (1975).
- 8. 1 and 8 are separated by 10% OV-17 column(11' × 1/4") in GC. CDCl₃ is used as a solvent and the chemical shifts are reported in parts per million relative to TMS in ¹H and ¹³C NMR. The absorption frequencies of IR are reported in reciprocal centimeters.

1: ¹H NMR, 1.86-1.03(16H, m), 0.84(6H,d,J=OHz), 0.83(3H,s), 0.82(3H,s); MS, 208(M*), 193, 165, 149, 137, 123, 109, 95, 83(base), 69, 55, 41; HRMS, Calcd. for $C_{15}H_{28}$: 208.2191. Observed: 208.2180.

8: ¹H NMR, 1.95-1.04(16H,m), 0.84(3H,s), 0.83(6H,d, J = 6Hz), 0.79(3H,s); MS, 208(M⁺), 193(base), 165, 151, 137, 123, 109, 95, 83, 69, 55, 41; HRMS, Calcd. for $C_{15}H_{28}$: 208.2191. Observed: 208.2180.

3: ¹H NMR, 5.53(2H, s), 1.98-1.28(12H, m), 0.85(6H, s); ¹³C NMR, 124.5(d), 35.1(s), 34.4(t), 34.1(t), 23.9(t), 21.7(q); MS, 164(M⁺), 149(base), 135, 109, 93, 81, 67, 55, 41; IR, 2907, 1449, 1374, 909, 735.

4: ¹H NMR, 3.85(1H, br s), 2.0-1.0(15H, m), 0.87(3H, s), 0.85(3H, s); ¹³C NMR, 67.9 and 66.9 for the isomers of the hydroxyl-bearing carbon. Several peaks were found at 37-31 and 25-21 ppm; MS, 182(M⁺), 164, 149(base), 135, 121, 109, 95, 82, 67, 55, 42; IR, 3289, 2915, 1449, 1370, 1242, 1040.

5: ¹H NMR, 2.35(2H, br s), 1.7-1.2(12H, m), 1.02(3H, s), 0.89(3H, s); ¹³C NMR, 199.8, 40.6, 38.0, 35.2, 34.8, 33.7, 23.4, 22.9, 21.7, 21.3; MS, 180(M⁺), 165, 137, 123, 109(base), 95, 82, 67, 55, 42; IR, 2899, 1709, 1447, 705. **6**: ¹H NMR, 2.0-1.3(16H, m), 1.01(3H, s), 0.88(3H,d, J=6Hz), 0.86(3H,d, J=10Hz), 0.77(3H, s); ¹³C NMR, 74.6 and 74.2 for the isomeric hydroxycarbon; MS, 206 (M⁺-H₂O), 181(base), 163, 123, 107, 69, 55, 44; IR, 3390, 2933, 1449.

7a: ¹H NMR, 4.95(1H,t, J = 1.5Hz), 1.9-1.2 (14H, m), 0.96(6H,d, J = 7Hz), 0.83(3H, s), 0.80(3H, s); ¹³C NMR, 140.4 and 121.3 for sp² carbon; MS, 206(M⁺), 191, 163, 150, 135, 107(base), 95, 81, 67, 55, 42; IR, 2907, 1449. **7b**: ¹H NMR, 5.23(1H,t, J = 2Hz), 1.9-1.2 (14H, m), 0.96(6H,d, J = 7Hz), 0.83(6H, s); ¹³C NMR, 140.4 and 115.5 for sp² carbon; MS, 206(M⁺), 191, 163, 110(base), 95, 81, 67, 55, 42; IR, 2907, 1449.

- 9. M. P. Hartshorn, D. N. Kirk, and W. KLyne, Tetrahedron Lett., 89 (1965).
- 10. H. Hikino, Y. Takeshita, Y. Hikino, and Y. Takemoto, Chem. Pharm. Bull., 13, 626 (1965).