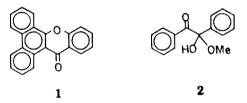
Novel Photochemical Reactions of Benzil

Sung Sik Kim', Yong Joon Yoon, and In Ho Cho

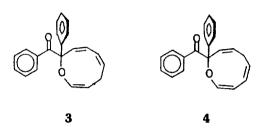
Department of Chemistry, Chonbuk National University, Chonju 520


Sang Chul Shim

Department of Chemistry, Korea Advanced Institute of Science and Technology Seoul 131. Received April 10, 1987

The photochemistry of α -diketones has been the subject of interest for about a century. It has been known that photoirradiation of benzil in solution produces a variety of reaction products, i.e., benzaldehyde, benzoic acid, benzoin, benzil pinacol, benzoin benzoate, and α , α' -dihydroxystilbene.^{1.7}

We now report that irradiation of benzil ($\lambda_{max} = 370$ nm) in methanol gave the unexpected photoproduct 1 as the major product, not α -hydroxyketone 2.⁸⁻¹⁰


A solution of benzil in methanol was irradiated with 350 nm UV light under nitrogen gas for 28 h to obtain a solid product.

The infrared spectrum showed $\nu_{C=0}$ at 1648 cm⁻¹ (1670 cm⁻¹ for benzil), ν_{C0} at 1243 cm⁻¹, and ν_{CH} (aromatic) at 3070-3020 cm⁻¹. The stretching and bending vibrations for the methyl group were not observed. ¹H-NMR spectrum (CDCl₃) showed phenyl protons at δ 8.68-8.35 ppm (4H, m) and \$7.80-7.30 ppm(8H, m). The molecular ion peak (m/e 296, $C_{21}H_{12}O_2$, base peak) was observed in the mass spectrum (EI method), which may be due to the rigid cyclic structure of the product 1. A peak at m/e 176 is good diagnostic peak for phenanthrene moiety. The M-CO peak was also observed at m/e 268(relative abundance 18.6). The new absorption bands observed at 363, 346, 330, 317, 300, and 277 nm are due to the phenanthrene moiety. The product 1 was not obtained in benzene or dichloromethane. This reaction can be explained on the basis of a mechanism involving the formation of biradical, a-cleavage of diketone, and hydrogen atom abstraction from solvent.⁸ Cyclization prior to the formation of biradical can not be excluded in this reaction.

Irradiation of a solution of benzil and cycloheptatriene in dichloromethane for 25 h gave a photoadduct 3 via (2+2)-cycloaddition as follow.

The adduct was isolated by the column chromatography (silica gel) using chloroform as an eluting solvent ($R_f = 0.59$, TLC solvent; CHCl₃). The structure for the adduct **3** is supported by the spectroscopic data. An alternative structure **4** has

been ruled out by means of the ¹H-NMR spectrum. The methylene protons were observed at $\delta 2.72 \text{ ppm}(\delta 2.25 \text{ ppm}$ for cycloheptatriene). The infrared spectrum showed $\nu_{C=0}$ (1680 cm⁻¹), $\nu_{C=0}$ (1250 cm⁻¹), $\delta_{C=H}$ (1450 cm⁻¹, methylene group), and $\nu_{C=H}$ (aromatic and aliphatic, ca. 3000 cm⁻¹). The ¹H-NMR spectrum(CDCl₃) showed methylene protons($\delta 2.72$ ppm, 2H, m), vinyl protons($\delta 6.78$ -5.25 ppm, 6H, m), and phenyl protons($\delta 8.13$ -7.25 ppm, 10H, m). The mass spectrum (EI method) showed m/e 77 (C₆H₅, phenyl group), 105 (C₆H₅, CO, base peak), and 197(M-C₆H₅, CO, C₁₄H₁₃O).

Studies on the mechanism and scope of the reaction are in progress.

Acknowledgement. This investigation was supported by a grant from the Korea Science and Engineering Foundation.

References

- D. L. Bunbury and C. T. Wang, Can. J. Chem., 46, 1473 (1968).
- 2. D. L. Bunbury and T. T. Chuang, ibid., 47, 2045 (1969).
- K. Maruyama, K. Ono, and J. Osugi, Bull. Chem. Soc. Japan, 45, 847 (1972).
- H. Inoue, S. Takido, T. Somemiya, and Y. Nomura, Tetrahedron Letters, 2755 (1973).
- H. E. Stapelfeldt and S. P. Perone, Anal. Chem., 40, 815 (1968).
- 6. M. B. Rubin, Top. Curr. Chem., 13, 251 (1969).
- 7. B. M. Monroe, Adv. in Photochem., 8, 77 (1971).
- 8. M. B. Rubin, Top. Curr. Chem., 129, 2 (1985).
- J. J. Bloomfild and R. E. Moser, J. Am. Chem. Soc., 90, 5625 (1968).
- M. B. Rubin, Z. Neuwirth-Weiss, J. Am. Chem. Soc., 94, 6048 (1972).