DOI QR코드

DOI QR Code

Chemical Modification of Glycolate Oxidase from Spinach by Diethyl Pyrocarbonate. Evidence of Essential Histidine for Enzyme Activity$^\dag$

  • Lee, Kun-Kook (Department of Chemistry, Chungbuk National University) ;
  • Kim, Hong-Sun (Department of Chemistry, Chungbuk National University) ;
  • Choi, Jung-Do (Department of Chemistry, Chungbuk National University)
  • Published : 1987.08.20

Abstract

FMN-dependent glycolate oxidase from spinach is inactivated by diethyl pyrocarbonate at pH 7.0. Inactivation of both apo- and holoenzyme by diethyl pyrocarbonate follows pseudo-first-order kinetics and first order with respect to the reagent. A series of difference spectra of inactivated and native enzymes show a single peak at 240 nm, indicating the modification of histidyl residues. No decrease in absorbance at around 280 nm due to formation of O-carbethoxytyrosine is observed. The rate of inactivation is dependent on pH, and the data for pH dependent rates implicate the involvement of a group with a pKa of 6.9. The activity lost by treatment with diethyl pyrocarbonate could be almost fully restored by incubation with 0.75M hydroxylamine. The reactivation by hydroxylamine and the pH dependence of inactivation are also consistent with that the inactivation is due to modification of histidyl residues. Although coenzyme FMN is without protective effect, the substrate glycolate, the product glyoxylate, and two competitive inhibitors, oxalate and oxalacetate, provide marked protection against the inactivation of the holoenzyme. These results suggest that the inactivation of the oxidase by diethyl pyrocarbonate occurs by modification of essential histidyl residue(s) at the active site.

Keywords

References

  1. Biochim. Biophys. Acta v.227 M. Shuman;V. Massey
  2. Ann. Rev. Plant Physiol. v.22 N. E. Tolbert
  3. Arch. Biochem. Biophys. v.154 L. L. Riao;K. E. Richardson
  4. Biochemistry v.18 H. Schwam;S. R. Michelson;W. C. Randall;J. M. Sondey;R. Hirschman
  5. J. Med. Chem. v.22 W. C. Randall;K. B. Streeter;E. L. Cresson;H. Schman;S.R. Michelson;P. S. Anderson;E. J. Cragol, Jr.;H. W. R. William;E. Echler;C. S. Rooney
  6. Arch. Biochem. Biophys. v.163 I. Zelitch
  7. Plant Physiol. v.41 I. Zelitch
  8. Korean Biochem. J. v.19 K. K. Lee;J. D. Choi
  9. Phytochemistry v.14 M. W. Kerr;D. Groves
  10. J. Biol. Chem. v.231 N. A. Frigerio;H. A. Harbury
  11. J. Biol. Chem. v.177 A. G. Gornall;C. S. Bardawill;M. M. David
  12. J. Biol. Chem. v.193 O. H. Lowry;N. J. Rosebrough;A. L. Farr;R. J. Randall
  13. Biochemistry v.9 W. B. Malchior, Jr.;D. Fahrney
  14. Anal. Biochem. v.67 S. L. Berger
  15. J. Biol. Chem. v.254 K. Horiike;H. Tsuge;D. B. McCormick
  16. J. Biol. Chem. v.238 H. M. Levy;P. D. Leber;E. M. Ryan
  17. Methods Enzymol. v.47 E. W. Miles
  18. Biochemistry v.19 W. B. Melchior, Jr.;D. Fahrney
  19. Biochem. J. v.131 J. J. Holbrook;V. A. Ingram
  20. J. Biol. Chem. v.249 E. W. Miles;H. Kumagai
  21. J. Biol. Chem. v.245 B. Setlow;T. E. Mansour
  22. Eur. J. Biochem. v.19 F. Thome-Beau;Le-Thi-Lan;A. Olomucki;N. V. Thoai
  23. J. Biol. Chem. v.250 H. Kumagai;T. Utagawa;H. Yamada
  24. Biochem. Biophys. Acta v.523 J. J. McTigue;R. L. Van Ethen
  25. Biochem. Biophys. Acta v.400 S. Tsurushiin;A. Hiramatsu;K. J. Yasunobu
  26. Biochemistry v.19 S. E. Meyer;T. H. Cromartie
  27. Eur. J. Biochem. v.165 A. Hiramaysu;S. Tsurushiin;K. T. Yasunobu
  28. Biochem. J. v.165 Y. S. Choong;M. G. Shepherd;P. A. Sullivan
  29. Biochemistry v.15 A. Hiwatashi;Y. Ichikawa;T. Yamano;N. Maruya
  30. Biochemistry v.25 A. W. Addulwajid;F. Y. H. Wu
  31. Biochemistry v.16 R. S. Ehrlich;R. F. Colman
  32. Biochemistry v.20 J. D. Choi;D. B. McCormick
  33. Enzymes v.12 H. J. Bright;D. J. T. Porter
  34. Prog. Bioorg.Chem. v.4 T. C. Bruice
  35. Ann. Rev. Biochem. v.47 C. T. Walsh