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A New Algorithm for the Estimation of Variable Time
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Abstract

A new on-line estimation algorithm for a time varying time delay is proposed. This
algorithm is based on the concept of minimization of prediction error. As only the parameters
directly related to the poles and zeros of the process are estimated in the algorithm, persistently
exciting condition for the convergence of parameters can be less restrictive. Under some
assumptions which is necessary in adaptive control, it is shown that this algorithm estimates
time varying time delay accurately.

In view of computational burden, this algorithm needs far less amount of calculations than
other methods. The larger the time delay is, the more effective this algorithm is. Computer
simulation shows good properties of the algorithm. This algorithm can be used effectively in
adaptive control of large dead time processes.

I. Introduction result of advances in computer technology.

Current interest in self-tuning scheme was

In recent years, self-tuning control has largely stimulated by the development of
received considerable attention, mainly as a the self-tuning regulators (STR) by Astrom and

Wittenmark [1] and the self-tuning controller
(STC) of the Clarke and Gawthrop[2].

In both approaches, the time delay of the
process is assumed to be known a priori as
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(52)



1987 1R EFLEERVE H 24% F 1 %

or time varying. Indeed, a mismatch in the
time delay may result in poor, or even unstable
performances[4,5]. In this cases, a dead time
compensation technique is required so that the
STC algorithm can be utilized to handle pro-
cesses with variable time delay. Some methods
developed up to recent years can be classified in
two approaches: (1) an explicit one which is an
ondine dead time estimation, represented in
Kurz et al.[4] and Wonget al.[6];(2) an impli-
cit one which makes the order of input para-
meters be extended to the maximum dead time,
developed by Wellstead et al. [5] Ydstiee[7]
and Chien et al [8].

All the above methods for the dead time
compensation have a major drawback that
the number of parameters to be estimated
increases with the maximum time delay. This
is undesirable for two main reasons when the
system time delay is large: (1) the persistent
excitation [9) of input sequences which is a
condition for parameter convergence is difficult
to be satisfied, (2) the adaptive capability of
the controller is aggravated, since it takes a
long time for parameters to be retuned accord-
ing to a change in the system dynamics.

We have proposed a new algorithm for the
time delay estimation of the process in which
the dead time changes discretely. Basic concept
of the approach is the minimization of pre-
diction errors. In this procedure, an indirect
predictor set and prediction error set are
constructed and the time delay corresponding
to the minimum prediction error is expected to
be the true time delay of the process. The main
advantage of this algorithm is that the number
of parameters to be estimated is independent
of the number of the time delay.

The purpose of this paper is to analyze
some properties of the time delay estimation
algorithm suggested in [10,11]. Some simula-
tions show the good performance of the
algorithm.

II. Time Delay Estimation

1. Problem Statements

The process to be considered is a single-
input single-output linear discrete time system
which can be described by the difference
euqation
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where

Ay ©)=a9° B (@D u (©) + wit)
)

A@DH=1+2, ¢+

B(qgl)=bo+b; gl +

q'l is a backward shift operator, and d° is

the time delay of the process which is assumed
to be an unknown time varying positive integer.
y(t) is an output signal, u(t) is a control input
signal, and w(t) is a white noise process with
distribution ~N(0, ¢2).

In this paper we don’t take the unmodeled
dynamics into consideration. So the process
to be considered and its model have the same
dimensions, (n, m), and the model is given as
follows.

where

Ay =q9B(@Huw+w

(4)

A@h=1+a,ql+. ... +a_q™ (5)

B@h=bo+bial+.. ... +b_q™
(6)

and d denotes the time delay of the model
which has the meaning of the delay-variable
to be estimated.

2. Algorithm
The following assumptions are necessary
to establish the new algorithms.

Assumptions:

1. Initial value of d° is known.

2. Control input signal u(t) satisfies the
persistently exciting condition and SNR is
sufficiently large.

3. d° is positive integer and changes slowly
within the range of d°—s, d°+S,

Assumption 1 can be satisfied by off-line
identification, and assumption 2 is commonly
used in adaptive control, The fractional delay
is not considered. ‘‘s”’ indicates the range of
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delay variation during one samping interval,

Under above assumtions, once the model
parameters are estimated by a recursive least
square estimation (RLSE), then (2s+1) indirect
adaptive predictors are generated by N(averag-
ing horizon) step past parameters. The predic-
tion errors are calculated from the predictions
y(t]t-d), where d is numbers from d%s to d°+s,
and the measured output y(t).

When a dead time change occurs, it is
expected that the variance of the prediction
error corresponding to the true dead time is
a minimum,

The original version of the algorithm is
presented at[10,11],

Here, we present a summary of the method
as follows:

Algorithm 1

Step 1: Let d°=d°, where d° is the initial
or estimated value of d°, and identify the
model parameter 8, where 6(t-d) =[ay, ...
i, bo,..,b 1T.

n m

s

Step 2: Construct an indirect predictor set

¥ (tt—d)=G(q" Dy (t— ) +F(@@hH

B@hHu—a
1=F(@qhHA@hH+qdc@h
ford= do—s, e d%+s

where s=>1 and A (q')
polynomials at time t—N.

and B (q'l) are

Step 3. Construct a prediction error set.

nq () = [y(t) —y(t {t—d)], for d=d®—s, ...
...,d°+s
Step 4: Determine new estimate of d°,

d°, by the following criterion.

d°= min E ng (1)

t
=min [— 3 2]
d  Nt-N+l1 d

Step 5: Gotostep 1.

Remark 1:
Variation of the process time delay makes
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the estimated model parameter deviate rapidly
from the process parameter. To check the
variation of the time delay, it is recommended
that the parameters used in prediction be the
past one, which has been identified before the
change of time delay. As the expectation of
the prediction error variance was replaced by
a time average, it is necessary to choose the
averaging horizon N properly. By our ex-
periences, N=n+m+d°® is a good one. Algorithm
1 can be applied, if the frequency of time delay
changes is not faster than N.

Remark 2:

Differences between algorithm 1 and Kurz’s
method; Algorithm 1 identifies the (n+m)
parameters corresponding to only the system
poles and zeros and finds the delay resulting
in the minimum prediction error variance.
In Kurz’s method, however, the number of
parameters to be estimated is increased to the
number of poles plus zeros plus maximum
time delay without regard to true time delay.
Estimation of the actual time delay is done in
every step by fitting the impulse response.
Moreover, as the fitting procedure is based on
the deterministic model without the considera-
tion of noise dynamics, estimation of time
delay is sensitive to noises. But in algorithm
1, as the average of prediction error variance is
the criterion of estimation, estimation is less
sensitive compared with the Kurz’s method.

III. Analysis of the Algorithm

The following lemmas are necessary to show
that the above algorithm estimates the true
delay accurately.

Lemma 1.
Let e;(t) and e, (t) be stochastic sequences
with zero mean, and let e3(t) be a deterministic

term. In addition, e (t) and e, (t) are assumed
to be uncorrelated with each other.

Define e(t)le;(t) + ey(t) + es(t), then
E[e?(t)] is minimized when each of E[e?

(t)], Ele3(t)], and E[e2(t)] is a minimum.
Proof:
E[e?(t)] = E[e} ()] + E[e}(t)] + E[e3(1)]
+ 2E[e; (1) ez (t) + €4 (t) es(t)
+ea(t) e3(t)]
=Elef (t)] +E[e? (t)] +E[e3(t)]
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From this, the lemma is self-evident.
From step 3 in algorithm 1, prediction
error nd(t) is reformulated as follows

n4(t) = y(t) — § (tlt—d)
= y(t) - 9(tlt—d®) + §(tlt—d%)

~9(tlt—d) n

¥ (tl—d% = G(q'1) y(t—d®)
+Fa) B@)u(t-d°) (8a)

1= Bea !y ata ]y + ¢d° &a-l
F(@)A(@)+q™ G(@™)

(8b)

where _ _ o
F@h=1+fql+.... .. T, ]

(8c)

Ga@bh=g+gm ql+...... +g, a1

(8d)

9 (th—d) = G y(t-a)
+F@ ) Bg ) ut-d)  (9a)

1=F@h) Aa@h+q9° 6@l ©b)

where
F(q'1)= 1+1, q'1 +....... +f q'CH'1
(9¢)
Glah=g+mal+... ... ten1 g™
(9d)

$(tlt—d°) is an optimal predictor, and
§(t|t—d) is a predictor set constructed to check
a delay change. F and G are obtained by
solving eq. (8b), while F and G are found
by solving eq. (9b)

Eq.(9b) is different from eq.(8b) in
that d° is replaced by d. K(a'l), estimate of
the polynomial A(q'l), is common in two
equations,

The following is well-known.

e(t) = y(t) — y(tt — d°)
=w(t)+f; wit-1)+
w(t—d®+ 1)

(55)
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Substitute eq. (11) into eq.(7), then

N =e(t) + 9 (th—d®) - y(tl—a)
(12)

With the use of eqs. (9a) to (12),
ng(®=e®+q% Ga) y(r)
+q 9”@ B@h um
~qd 6@y
g4 B u ()
=e®+(@9° 6@ - ¥ Gty vy
+@®° g Ba)) - a4 Fa™h

E(q'l))u(t) (13)

Since a control input u(t) is purely deter-
ministic, y(t), an output, can be decomposed as
follows.

Y(t) =Y 4o (1) + Ygp5(t) (14)

NPT 131 uct
Vet Ala™ B(@) Al )l u(®)  (15)

Yo A11/AGD] wt) 1

where y det(t) is purely deterministic, while
Yt 0(t) is purely stochastic and has an auto-
regressive form driven by a white noise.

ysto(t) can be represented as eq. (17);

ysto(t) =w(t)+o; wt—1)+oay w(t—2)+--
17)

Substituting eq. (14) into eq.(13), the follow-
ings are obtained.

Lete;® A (¢9° 6@ — a4 6@y

Ystol®) (18)

e2(t) Qe(t) (19)
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es(® A @96y - qd6ialy
VerH * @® Fh é(q‘l)

a4 R B@u®m @0

Then mg)=ei(t)+e(D+est) (51

where e3 (t) is a purely deterministic term,

The relations of the each terms in eq.(17)
needs more considerations as seen below,
Now we will show that the algorithm esti-
mates a delay accurately, Here the cases where
d=>d° and e=>d° are taken into consideration,

Lemma 2.
If d=>d° E[n%(t)] is minimized when
=40 d
d=d®.
proof:

If d=d°+l, with the use of egs. (8¢c),
(8d), (9c), and (9d), eqgs. (18) to (19)
are rewritten as

o — -
er()=a9 [go+ (@ —go)q H+.......

+(8,q —gg) a™!
+(8, DA v (22)
e (1) = e(t) (19)

= _do o, o, -1

e3(t)=4q [go +(81 —8)a +........
+ @~y a™ M, a™)
Yaget Ot .. (23)

If d=d°, these are changed to

el(t)=q‘do (80 — o)+ (&1 —) @™ +....

+ (8,1 — &n.1) gty VstolD
=0 24)

e, (t) = e(t) (19)

(o] _ —
es(t)=q9 [(go —80) + (g1 —gg e

+ @y 8y ) A T yge 0+

=0 (25)

In cases of dz2d°, e,(t) is composed of
w(t—d®), w(t—d®—1), ....., and e,(t) consists
of w(t),....., w(t—d®+1). As e;(t) and e, (t) are
uncorrelated, we can apply lemma 1. Thus
minjum of E[nz(t)] is acquired when each
term of E[ef(tﬂ, Ele}(t)], and E[e3(t)] is
a minimum. If d=d°, f=f. and g=g. since f,
and El are calculated from l\}-step pas
parameters.

E[n?, (1) =E[e}(D] + E[e3(D] +e3(D)
d-+1

(26)
d°—1
Eln?, ()] =E[e2(®)] = T fF o
d i=0 1 (27)
Since
E[e? (D] +e3(1) >0, (28)
LElR? (1) <EBln?, (D). (29)
d dv+1

For d=>d°+2, the same result is easily obtained.

In general, we can replace expectation by a
time average in the small interval where the
process can be regarded as a stationary ergodic
process. So the true delay d© is found with
a procedure in step 4 in algorithm 1. But, if
d<d® (e.g. d=d°—1), e;(t) and e,;(t) have a
term w(t—d+1) in common, and as a result,
e (t) and ep(t) are correlated. Therefore we
can’t use lemmma 1 in such a case.

Lemma 3;
Assuming that SNR is sufficiently large and

d<d°, E[n?i(t)] is minimized when d=d°,
Proof:
E(no (D] = E[e}(D] +E[e3 (V)]

+ E[e$(t)] + 2E[e1 (t) ez ()]
(30)

Enjo(t)] = E[ e3(1)] = E[e*(1)]
To verify that E[né(t)]>E[n20(t)] for d<d°,
d
the following inequality should be satisfied.
Elei(t)] + E[e3(t)] + 2E[e;(t) e2(1)]>0

for d <d°-1 31



19874 17 B IHEHLE F 24 % 1 %

As only w(t—d°+1) is a common term in
e; (t) and e, (t), it is satisfied that

—k 0% <2E[e; (1) e5(1)]) < ko? (32)

where k=2*% | f o ‘g6
d

In this case, e3(t) is deterministic and

-d%+1

ea=q4 g+ (g —g) g +

_ o+l — -
+(@p g — 8 ) a4 4, 4T Ve

(o] — (o)
L R (CUE I U SU
-1
—q(l+f gt +140, 4412
u(t) (33)
From eq. (31) and eq.(32),
Ele?(t)] +e3(t) >ko? (34)

As e%(t) in eq.(34) implies the power of
inputs and outputs, the inequality (34) is
satisfied provided that SNR is large.

Theorem:

Under the assumptions chapter 1I,
the variance of prediction error corresponding
to the true delay is the minimum. That is d°=
mdin Elnd?(t)] for d°—s <d<<d®+s, Vt.  (35)

in

Proof:

As results of lemma 2 and lemma 3, it is
evident.
Remark 3:

Algorithm 1 is the same as the previous
onel19.11] in basic concept. But the previous
one used é(t) in constructing adaptive predic-
tor, while algorithm 1 uses O(t—do). Using
0(t—d°), Algorithm 1 is proved to estimate
delay exactly.

IV. Simulation Results and Discussion

Digital computer simulation was done for
the process given below.

A@h=1-04q1 -032q7

Blg)=06+03q! (36)

(57)
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where d° is time varying positive integer and
is changed sequentially to 2 —1 —-2 —3 —4 at
every to steps as in Fig. 1. Fig. 2 is the
features of E[né(t)] for d=1,2, 3, 4.

In Fig. 3, real line is “true delay (d®)” and
a dotted line is ‘“‘estimated delay (dho)”. Input
signal had sufficiently rich frequencies and
SNR was 14,9 dB.

In Fig. 2 & Fig. 3, input signal is

u(k) = (3.1 sin (3.8k) + sin(k) —4 .4 sin (5.3k)

+ 3 cos(8.4k)) / 10+ 1 37
Additive noise is 0.3w(k), where w(k) is white
Gaussian process with variance 1.

Fig. 3 also shows that parameters are well
updated.

Fig. 4 represents the case of SNR=20.3
dB, where input signal is given as eq. (37)
Additive noise is 0.1 w(k).

Fig. 5 is the graph of d°, and o when SNR=
30.2 dB, where input signal is

U(k) = (3.1 sin (3.8k) + sin (k) — 4.4 sin
(5.3k) +3cos(8.4k))/30+1 (38)

Additive noise is 0.03w(k). In the simulations
all the initial parameters are zero.

Simulation results show that the algorithm
estimates a time-varying time delay accurately.
For good parameter estimation, not only large
SNR but also persistently exciting condition
are necessary. In discrete system, persistently
exciting condition depends on the magnitude of
input signal variation. If a input signal doesn’t
satisfy persistently exciting condition, the input
signal may be almost constant and in this
circumstance time delay mismatch (d°#
d°) makes no problems. To estimate time

80 0 step

Fig. 1. Time delay of process.
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Fig. 2. Expectation of prediction error.
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Fig. 4. Delay & parameter SNR=20.3dB.

delay accurately, more strict persistent excita-
ting condition is desired than theoretical
persistent exciting condition,

In this algorithm only numbers of para-
meters are estimated. And it needs far less

d
4 N
d° F’T'—r——

J
[¢] 60 120 180

L
240 sTE>

Fig. 5. Delay & parameter SNR=30. 2dB.

calculations than any other methods which
use extended parameterization techniques. The
amount of calculations needed for the construc-
tion of predictors is negligible compared with
the amount of calculations needed for para-
meter estimation. Fractional time delay is
not considered in this paper.

V. Conclusion

In this paper, a new on-line estimation
algorithm for a time varying time delay is
suggested, which is based on the concept of
minimization of prediction error. Under some
assumptions, it is shown that this algorithm
estimates time varying time delay exactly.

In view of computational burdens, the
algorithm needs far less calculations than other
methods. The lager the time delay is, the more
effective this algorithm is this algorithm can be
used effectively in adaptive control of discrete
systems with time varying time delay.
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