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ABSTRACT

By the extension and the modification of the efficient aigorithms for the DCT ~ [, the fast algori-

thms to compute three versions for DCT, four versions of DST, and a DHT are developed. It is shown that the
algorithms developed in this paper have simple structures and the numbers of multipication and addition are reduced

as compaired with the existing efficient algorithms. The algorithms presented in this paper indicate the close reia

tionship’ among different versions of the DCT and DST as well as a DHT. The formulas to compute the rum

bers of multiplication and addition of them are derived.

I. INTRODUCTION

In recent years, there has been an increasing
interest with respect to using a class of ortho-
gonal transforms in general area of digital signal
processing. Although the Karhunen-Loeve Trans-

*LERBE BRTEH
Dept. of Electrical Engineering, Kangweon Nat. Univ.,
200 Korea.
#FICEYE 87 - 25(B2% 1987, 3. 20)

form(KLT) is optimal in various orthogonal
transforms, there is no general algorithm that

enables its fast computation .

This corres-
pondence treats of the algorithms that enable
the fast computation of the Discrete Cosine
Transform (DCT), Discrete Sine Transform(DST),
and Discrete Hartley Transform(DHT).

The DCT has been successfully applied to
the coding of high resolution imaginary'®’ . The
use of the DCT in a wide variety of applications

has not been as extensive as its properties that
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would imply due to the lack of an efficient algor-
ithm. The first method of implementing the
DCT utilized a double size Fast Fourier Trans-
form(FFT) algorithm employing complex arith-
metic throughout the computation'’’ . A more
efficient algorithm involving only real operations
for computing the fast DCT was found 3 @ .,
The most efficient algorithm of the DCT was
proposed by the Lee™, the number of real
multiplications appears to be (N/2)log;(N) for
a N-points DCT with N=2™  But his fast algor-
ithm was applied to only two versions of four
types of DCT which were introduced by the
Wang'®' . Wang has shown that the fast algor-
ithms for all versions of the DCT and DST depend
only on a fast algorithms for DCT-IV (One of the
four versions of DCT defined by Wang %'). More
recently, even better efficient algorithms'”:
® were found. In this paper another fast algor-
ithms were developed for the all versions of DCT
by the extention of the methods that Lee'?
proposed. This fast algorithms were compaired
with the existing efficient algorithms.

Jain®  has shown that for a first-order
Markov sequence with certain boundary condi-
tions, KLT reduces to the DST-I or DST-IV.
Subsequently DST-II and DST-III were redefined
by Krekre and Solanki .  Yip and Rao !
have proven that for large sequence( n =32)and
low correlation coefficient( p <0.6 )DST performs
even better than the DCT-I, which is widely
accepted as the best substitute for the KLT.
They have developed a fast algorithm for DST-I,
which is similar to fast DCT and Wang "’ has
found the fast algorithms for DCT-II and DCT-
III. Recently a systematic method of the spare
matrix factorization for all versions of DST
was found™ . 1In this correspondence another
methods for the fast computation of four ver-
sions of DST were discussed and compaired with

the existing efficient algorithms. One of this
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object is to find the most efficient algorithm
for DST by the extention of the algorithms for
DCT.

A sequence of N real numbers possesses a
DHT that is a sequence of the same length and is
also real wvalued. One such transform closely
related to the DFT is the DHT " | Since DHT
is the transform that directly maps a real valued
sequence to a real valued spectrum, it is more
convient than the DFT in application to numerical
spectral analysis. For the fast algorithm of DHT,
Bracewell " has recently presented a radix-2
decimation in time fast DHT algorithm, demonst-
raing that the DHT gives rise to at least one fast
algorithm that exist for the DFT. R. Ansari ¥
defined the Discrete Combination Fourier Trans-
form(DCFT) of the sequence x(n) and showed
that DHT is the special case of DCFT. Soresen
and et. " showed that the philosophy of all the
common FFT algorithm can also be applied to the
computation of DHT. In this paper, the another
fast algorithm for computation of DHT is dis-
cussed with the most efficient algorithm for DCT
and DST. One of the objects of this report is to
develop the fast algorithms for computing DHT.
We assume that data sequence length is n=2M
II. DERIVATION OF FAST COMPUTATIONAL

ALGORITHMS FOR DCT

Four versions of DCT are introduced and
their fast algorithms are derived respectively.
Since the versions of DCT-II and DCT-III are
the most important of all versions for DCT, at
first the fast algorithm for the DCT-II and DCT-III
are discussed, and then the version of DCT-I
and DCT-IV discussed.

II-1. Fast Algorithm for DCT-III

The version of DCT-III for the data sequence
X(n)(forn=0, 1 ... N-1) is defined'” by
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x(0) =33 e -k(n)-cos[n(wr%)n/m :

0sk=N—1 (1)

where

1//2 :n=0
L 1:n=+0

e(n

If we denote C} and S¥ as

Cl=cos(mx/y)

Si=sin{zx/y)
then equation (1) is
x(k)=X(n) C¥* 1™ 1 0s ksN—1

where X(n)=e(n)-5((n)

The efficient algorithm for the fast computation
of (3) was proposed by Leels] and the following
equations (4)<6) were given by him. Let us take
G(n) and H(n)

If we denote the version of DCT-III for G(n)
and H(n) by g(k) and h(k) respectively, from (3)

we obtain
N/2-1 1
g(k) = & G(n) Clrubn .
0Sk=- -1
h(k)= 53 H(n) C ¢
(5)

Now from (3) and (5) We can obtain the following
equations

x(k) =g(k)+h(k)/(2CE*)

x(N—1—k) =g(k)--h(K) /(2 CE*F)
N

0Sk=®
k=3

1 (6)

Therefore we have decomposed the N-points
DCT-III in (3) into the sum of two ; -points
DCT-1II in (5). By repeating this process, we can

decompose the DCT-III further. In this corres-

’ pondence, above procedures are extended for
Gin) =X(2Zn) | 0<k <N 1 all versions of DCT, DST, and a DHT. For exam-
Hin) = X(2n+1)+X(2n—1) [ 7= =2 ple the versions of DCT-III for N=4-points is
4) represented by fig. 1.
X(0) x(0)
X(2) —3 = . - x(3)
4 -1
X(1) — x(1)
1/2 08
X(3) > » » ’ x(2)
1 - 1 -1
c, 1 1/2¢Cg
Fig. 1 Signal Flow graph for fast DCT-III (N=4-points)
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If ulch] and a[c?] are defined as the numbers
of multiplications and additions required to im-
plement a N-points DCT-III respectively; then it
can be shown that

u[C‘L’J:glogz(N)

a[C'ﬂ]::S'N-logz N—N+1

II-2. Fast Algorithms for DCT-1I

The version of DCT-II for data sequence
x(k) (for k=0,1 ...N-1) is defined'V’

N 2 N-1
X{n)= "e(n) 2, x(k) - C¥**"™:0=n=N-1
N k=0
(8)
So we have

~ N1
X(n):nzz'b x(k) -C{¥**""™ 1 0=n=N 1 {9)

Now (9) for the DCT-II can be obtained by trans-
posing the (3), i.e. transposing the direction of the
arrows in the flow graph of DCT-III since DCT-II
is an orthogonal transform. For example the
fast algorithm of 4-points DCT-II is obtained by

reversing the direction of arrows in Fig. 1.

II-3. Fast Algorithms for DCT-I

The DCT-I was defined for the order N+1
and it was introduced into digital signal proces-
We denote the DCT-I of data
. N) by X(n)(for

sing by Wang ®
sequence )A((n) (for n=0,1
n=0,1 ... N). Then we have

o N .
f((k):\/;e(k) nz:':)e(n)-X(n)C‘rf-" (10
Where
! Yj=0 and j -N
e(y) 3

1/V2 1j=*0 and j=+N
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If we assume the notation of

NPTELILE \/N |
elk) Voo ! )
J

C0=k=N 12)

In this correspondence, the fast algorithm of
computing the x(k) in (12) is developed. We
rewrite the (12)

N
1

N 5
x(k) '[‘Zlo X(2n) Cyy - HZ‘,O X(2n-+ 1)C<Nn+§-)k

0= kélj (13
If we assume the following notations
N2
g(k) 20 X(2n) CIY, : 0§k§§- 149
2 p n+lik . N
h(k) nZO X(2n-1)CMei ()gkgz' 1
(15

then the important relationship is obtained.

x(k)=g(k) +h(k) {16
N N N2

x(g»zg(g)fnzo X(2n) (- -1)" {17

x(N-k)=g(k) -h(k) {18

Therefore we have decomposed the N-points
DCT-I in (12) into sum of%’ +1 points DCT-I
and I; -points DCT-II in (14) and (15) respectively.
By repeating this process we can decompose the
DCT-I further. For example, consider N(=8)+1
points DCT-I. Now from the (14) and (15),
the following equations are valid.
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g(k)= 2

=X(0)+X(4)CE+ (—-1)* -

~c
3
o &

X

X(2n)CP*

x(8)

[(X@2)4+( -1 x(6)]
X(2n+1)Ckr*? : 0< k< 3

x(0)

X(8)

/ x(1)

X V\\

/

x(Z).

X(2) -t /——~
X(6) =4 x(3)
RNV
X(4) — x(4)
X(1) — x(8)
£(3) | The Fast x(7)
DCT-I
(N=4-points)
) - (Fig. 177} X6
(7)) — x(5)

Fig. 2 Signal Flow graph for fast DCT-I (N=8-points)

In order to compute the value of g(k) in (19)
only one number of multiplication is required,
has the one of 0, 1, and -1, and the
numbers of additions are 11. Because the h(k)
in (20) is the 4-points DCT-II, Fig. 1 can be used
in the Fig. 2. which is the flow graph of the 8-
points fast DCT-1.

since C¥

Since #[C¥.1] andq [CL.. ] are very important
factors for the fast algorithm of DCT-I, we have
to compute them of (12). If we assume the data
length N=2™", then the following formulas are
valid from (7)

5 1)

u[Chi] =7 logt—N+1

a[Chu]=(SN+1)

5 logi— 3 N+13

22)

Now the present algorithm is compaired with the
existing efficient algorithm by the Table 1.

II-4. Fast Algorithm for DCT-IV

The version of DCT-IV data sequence X (n)
(for n=0,1 ... N-1) is defined ‘¥ as

Table 1 Comparison of DCT-I Algorithms.

Multiplications Additions
N Present References Present References

Method (6) (8) Method (6) . ®

1 5 1 15 10 s

5 9 5 28 27 l 28
17 17 21 17 65 72 65
33 49 55 49 162 187 162
65 129 145 129 403 470 [ 403
129 321 371 321 980 1145 ! 980
257 769 917 769 2325 2716 ‘ 2325
513 1793 2199 1793 5398 6303 [ 5398
1025 4097 5145 4097 12311 14370 12311
2049 9217 11803 9217 27672 32293 27672
4097 20481 26653 20481 61465 71720 61465
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x(k)=};',: e(k) X(n)CEF™+h 1 0 kSN-—1

23)
We rewrite x(k) in (23)

X(n) Cl P - < k<=N—1 @4

Where X(n)=e(n) - X(n)
In this correspondence, the fast algorithm com-
puting x(k) in (24) is discussed. From (24),

we obtain that
1 N-1! .
x(k)- 2Cyr F= 5 [X(n— 1)+X(n)]CH "
{25

Where X(~1)=0
If we assume G(n)=X(n-1)+X(n), then

x(k)=g(k)/2C¥ Pt : 0=k<SN-—1 (26)
1

N-1
Where g(k)= ,;Y:}, G(n) - C{e® 27

Since the values of g(k) in (27) are computed by
the fast algorithm for DCT-HI, x(k) in (26) is

obtained easily. For example, the fast computa-
tion of a 8-points DCT-IX is represented by Fig. 3.

X(0) e x(0)
X :: (%g 1/2¢3, x(1)
X(2) % g’ Ty x(2)
X(3) = § T x(3)
X(4) ?; 72, x(4)
X(5) g e x(5)
X(6) > N x(6)
X(7) Wc'g_' x(7)

Fig. 3 Signal Flow graph for fast DCT-IV (N=8-points),

We can find the values of #[C~Jand a[C}] easily
with

u[CY = u[CY +N = Tloga(N)+ N 29

Table 2 Comparison of DCT-IV Algorithms.

Multiplications Additions
N Present References Present References

Method (6) (8) Method (6) 8)
4 8 8 8 12 12 16
8 20 22 20 36 38 44
16 48 56 48 96 104 112
32 112 136 112 240 264 272
64 256 320 256 576 640 640
128 576 736 576 1344 1504 1472
256 1280 1664 1280 3072 3456 3328
512 2816 3712 2816 6912 7808 7424
1024 6144 8192 6144 15360 17408 16384
2048 13312 17920 13312 33792 38400 35840
4096 28672 38912 28672 73728 83968 77824 J
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a[CY]=e[CK ]+N—1~~N log: (N) @9
u[CY¥land «[CV]
of the most efficient algorithm given by Suehiro
and Hatori"®® for DCT-IV. Therefore »[CY] and
a[CV] in (28) and (29) respectively are compaired
with existing efficient algorithms in Table II.

are identical with the results

III. FAST ALGORITHMS FOR DST

All versions of DST are introduced and
their fast algorithms are derived. Since the version
of DST-IV becomes the basis for all versions of
DST, at first the fast algorithms for DST-IV are
discussed and then the others are derived.

III-1, Fast Algorithms for DST-IV

The DST-IV was introduced by Jain®
and was studied by Wang® | If we define S¥=
sin( #x/y), the version of DST-IV for data
sequence X(n)(for n=0,1...N-1) is defined as
ST D 0S kSN—1

(30

So we defined X(n)=y/ %-X(n)then x(k) in (30) is

x(k)= 3 X(n) SEH*P D 0Sk<N—14)

The fast algorithm computing x(k) in (31) is
discussed in this correspondence. By appendix,
we can-rewrite x(k) in (31) and derive the x(N-
1-k).

x(k)=[—a(k)+b(k)] /[ 2Sik¥]

0=k §§~ 1 (32)
x(N—1—k)=[a(k)+b(k)] / [2CH]

: ogkggml 33
Where

)= 57 [X(2n)—X(2n+ 1)] Cish b

(34)

b(k)= 5 [X(2n)—X(2n—1)]CEAP 69

Therefore we can compute the N-points DST-IV
x(k) in (31) by the use of the fast algorithms for
DST-II, because a(k) in (34), b(k) in (35) are ob-
tained by the fast algorithm of DCT-IV and DCT-
H respectively, For example, N=4-points DST-IV

X(0) .

/28%6 . x(0)

R -1
1/2c23

1/ 2816

XD Wz

-1 1 /2cg
— 1/2¢g

x(1)

X(2)

x(3)

A/2C16

X(3)

Fig. 4 Signal Flow graph for fast DST-IV (N=4-points) .
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2 1
X(0 1/2C3 R 1/2332
X(2) \\//] \ j ;j 1/2C3 1/28%; x(1)
= S O
X(4) * — 78 x(2)
NN
X(6) - — : x(3)
-1 1/2(‘(;72
[~ ] > X(7)
X Le M 11205
D //\ S A /AN
-1 Heooer 3
X(3) o g 22 5
AN - AR
X(5) = 2. x(4)

Fig. 5

and N=8-points DST-IV are represented by Fig.
4 and Fig. 5 respectively.

Therefore we can also computey[ S Jande [SY Jby
the use of (7)

N~= I,\I~logz(N) +N

3
ﬂ[SN] =2 -,u[CIﬂ/z] +- 2

2

=ulCV] (36)

2 = 3 N loga(N)

5
U[SN]:Z 'Q[CE/2]+ 2’N'“ 2

=4[CY] 37

Since the facts that [ S%]—x[CNand o [S¥] =a[CH]
were proved by Wangw‘ in another method, the
values of Table II are also valid with DST-IV.

III-2. Fast Algorithms for DST-III
The DST-III was introduced by Kekre and
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Signal Flow graph for fast DST-IV (N=8-points),

Solanki 1 and was defined by Wang(é). The

version of DST-III for data sequence )A((n) (for
n=1,2...N)

Where
/2
N

e(n)v—{ —
s

So we defined X(n)=e(n)+X(n), then x(k) in (38)
ix

n*0

n-=10

N

:2 X(n) . SlNkr%-)n

n=1

x(k) S0=k=N-1 (9

In this correspondence, the fast algorithm com-
puting X(k) in (39) is developed. We rewrite the
(39) as
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x(k)=g(k)+h(k): 0= k=N—1 40
Where
;i,,
g(k)= nZ; X(2n+1) Sy (41)
2“1
hik) = 3 X(2n) - Sia" u)

And x(N-1-k) is obtained with the g(k) and h(k)
in (41) and (42) respectively.

x(N—1—k)=—g(k)+h(k) (43

In order to compute x(k) in (39) fast, we have
to compute g(k) in (41) and h(k) in (42) by means
of the fast algorithm for Ij -points DST-IV and
DST-IIT respectively. By ;epeating this process,
we can obtain the value of x(k) in (39) fast.
For example, the fast algorithms for N=4-points
and N=8-points DST-III are represented by Fig. 6
and Fig. 7 respectively.

X(1) \ ><1/288 \/ - x(0)
X(3) 1/283 x(1)
X(2) ~* ~ > - x(3
X(4) - x(4)
Fig. 6 Signal Flow graph for fast DST-III (N=4-points)
X(1) s— e o x(0)
A IRV
X(3)+—— 7 & y x(1)
~ &
X(5) ~¥— = x(2)
7
X(7) — g j: : : : x(3)
S R ) AN
o0
X(4) | ® . x(6)
A IVZANN
X(6) =— 2 - x(5)
/N
X(8) —— B o x(4)
Fig. 7 Signal Flow graph for fast DST-I1I (N=8-points),
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Therefore we can also compute z[ Sh Janda[S¥]y
use of #[Sh1lin(36)and «[SN] in(37).

#[SN) = p[SN ]+ ulSh -+ +u[S +u[SY =

N
=, loga(N)=p[CY] nz1 “

a[S]=alS¥.]+alSh.+-

<

2N-logz(N) ~2N+9 ‘n28 (45)

It is pointed out that the values of , [SB] is less
a[C¥] although Wang'¢
and Suehiro and Matori '® showed thata [ S lequ-
als to o[C%] In Table III, the present algorithm
is compaired with the existing efficieni algorithms.

than the values of

I11-3. Fast Algorithms for DST-II

The DCT-III was introduced by Kekre and
Solanki  and was defined by Wang'¢'»'11’,
The definition of DST-II for data sequence x(k)
(for k=1,2....N)

ba[SY] +a[S"]+N

X(n) -
(46)

From the (46), We can get the following equation
which is regarded with the version of DST-II
and its the fast computational method is discuss-
ed.

N-1
X(n) = 5 x(k) S 1 0snsSN-1 @)
Where X(n)=N-X(n) /( 2e(n))
The DST-II can be obtained by transposing the
DCT-III.
N=4-points and N=8-points DST-II are represented

For example the fast algorithms for

by reversing the direction of the arrows in Fig. 6
and Fig. 7 respectively. Also »[Sh] and a[S\ Jare
equal to #[SV] ande [ S¥ | respectively. Therefore
the numbers in Table III are also valid for DCT-IL.

III-4. Fast Algorithms for DST-I

The DST-I was defined by Jain'®' and was

introduced by Wang'®’ and Yip and rao®

Table 3 Comparison of DST-III Algorithms |

Multiplications Additions
N Present References Present References

Method 6) ®) Method (6) (€))
4 4 5 S ‘ 13 9 9

12 I 13 13 [ 29 29 29
16 32 35 33 73 83 81
32 80 b9l 81 185 219 209
64 192 227 193 457 547 513
128 448 547 449 1097 1315 1217
256 1024 1283 1025 2569 3075 2817
512 2304 2947 2305 5897 7043 6401
1024 5120 6659 5121 | 13321 15875 14337
2048 11264 14851 i 11265 ‘ 29705 35331 31745
4096 24576 32771 i 245717 & 65545 77287 69633 B
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The version of DST-I for data sequence X(n)
(for n=1,2...N-1)

=y ZX X(m S 1sksSN-1 @

(3]

If we take X(n) =X(n)\/j,he version of DST-I is

z

x(k)= 2 X(n)S"

n=1

. 1=k=N-1 49

The fast algorithm computing x(k) in (49) is

N

h(k)= fZ X(2n)S¥% 0=k §g~l 64)
To find the fast algorithm of DST-I, we have to
decompose h(k) in (54) by repeating process and
g(k) in (53) by the fast algorithm for DST-IIL
For example, the fast algorithm computing the
7-points DST-I is represented by Fig. 8. There-
forex[Sk_,] and a[S,.,] are also given with the
following equations.

developed in this correspondence and the follow- X(n) o x(4)
ing equations are obtained by manipulating (49). e X
X(3) — A X ——x(3)
55\ /
x(N/2)=g(N/2) 60 X(5) — ® ~§ x(2)
o ]
N —E 3
x(k)=g(k)+h(k) : 0= k=51 5) XM a x(1)
N X(2) - A x(7)
x(N—k)=—g(k)+h(k): 0= kgrzwfl (52) >< / X\\
X(6) 3 - x(6)
Where - - x
X(4) x(8)
g N
_ (n+lk 2
g(k)= 23 X(Zn+t1)Swir™ 1 0=k=5 63  pigg Signal Flow graph for fast DST-I (N=8-points)
Table 4 Comparison of DST-II Algorithms,
Muitiplications Additions
N Present References Present References
Method (12) ©® | Method (12) { (6)
: ]
3 1 1 2 [ 6 4 | 4
7 5 5 8 ? 23 19 22 J
15 17 17 30 60 62 i 62
31 49 51 54 I 149 175 166
63 129 141 130 ‘] 366 456 422
127 321 367 310 887 1129 1030
255 769 913 730 2112 2698 2438
512 1793 2195 ? 4937 6283 ?
1023 4097 5141 ? 11346 14348 ?
2047 9127 11799 ? 25691 32269 ?
4097 20481 26649 J ? 57444 71694 ?
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/1[SL-1] :,u[S[L/z] +ﬂ[slﬂ/2—l] M [SP«/Z]

‘*#[Sgﬂ]4“'“*#[531+ﬂ[sm
N

:Elng(N)WNx#l (55)

a[Sh]=alS§ ]+ N2+ a[Sh]

B
:a[Sgi]*%a[S:i]'#""'Jra[sli] + 4 +N—2
N

:(‘§+3)-3-logz(N) -4N--8 {56)

And the present method is compaired with the
existing efficient algorithms in Table IV,

IV. FAST ALGORITHM FOR DHT

The DHT was defined by Bracewell !9,
and its fast computational algorithms were deve-
loped by Bracewell 1 | Ansaritd, and H.V.
Soresen and et 18, The DHT pair is defined for
a real valued length-N sequence X(n) (for n=0,1...
N-1) by the following equations.

N1

x(k) = 2 X(n) [CH"#S*" 1 0= k=N--1

h=0

In this correspondence, we derive the fast al-
gorithm computing x(k) in (57). We rewrite
x(k) in (57)

% (k) =g (k) +h(k) 0§k§§'-1 59
Where
g(k)zzz G(n)CL%: Oékég— 60)

Where G(n)=X(n)—X(N—n)
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Where H(n)=X(n)-

hi0)= 0

Kn
N/2

-X(N—n)

And we can obtain the following equations by

applying the properties of trigonometric func-

tions.

x(N--k)=g(k)~h(k):

Where h( ‘:I)T 0

1

N

62)

Therefore, we have decompl%sed the N-points
DHT in (57) into the sum of(~~+1) -points DCT-I

g(K) and (Y

s

- 1) -points DST-I h(k). By the use

of the fast azlgorithm for DST-I and DCT-1, we can

X(0) e———————
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7

£(8)

z *8u4

(s3urod-g)1-300 1824 4L

£(15)

X(14) »
X(13)
X(12) o
X(11)

X(10)

X(9)

8 ‘3814

(s3utod-/)1-18a 15eg ayg

|
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x(3)
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° x(5)

x(6)
x(7)
x(8)
x(15)
x(14)
x(13)
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x(11)

o x(10)

x(9)

Fig. 9 Signal Flow graph for fast DHT (N=16-points),
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obtain the efficient computational algorithm for
DHT. For example, the fast computational algor-
ithm for 16-points DHT is represented by Fig. 9.

Therefore the number of multiplication and
addition of N-points DHT can be obtained by the
following equations respectively.

u[N: DHT] = [Cy 1+ u([Sy_]

N 3 , ,
=5 logz(N)“‘§N+ 2 ©3)

a[N: DHT] =a[Cy ] +a[ Sy ]+ 2 (N—2)
2

i_‘

3
= (5 N+10) - log2(N)—3N--9 64

And the present method is compaired with the
existing efficient algorithm in Table V,

V. CONCLUSION

This paper has presented the fast algorithms
for all versions of the DCT and DST as well as a
DHT. By the extention and the modification of

the efficient algorithm that developed for the
DCT-III, we have obtained one of the most effi-
cient algorithms to compute the other versions
of DCT and four versions of DST as well as a
DHT.

The algorithms developed in this paper indi-
cate the close relationship among different ver-
sions of the DCT and DST as well as DHT. It
has been shown by the computer that the flow
graphs for the various examples in this paper
are valid, And the numbers of multiplications and
additions are comparative with the existing effi-
cient algorithms,
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Appendix
We write equation (31)

x(k) = Z X(n) SE+ ™b 0= k<N—1 )
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now, we can decompose the x(k) in (1.

x(k)=gi(k)+h,(k) (A1)
Where
;_‘ 1 1 N
gill)= 2 X(2n) SEP e 1 0s kT -1
(A2)
';--x

h)(k) =

™

n=0

i

X(2n+1)S*m+d o ké—g-l

(A3)
In a similar manner x(N—1—k) is derived

as the following equations.

x(N 1-k) =g2(k) ~hs(k) (A4)
5 (k4L (n+hy
ga(k) = 3 X(2nd1) C o
:ogksgﬂ (A5)
’;‘_‘ (k+;—7 (n+3
ha(k) == Py X(2n+1) CN/2 ¢
ogksgu—l (A6)

Now we obtain the following equations from

equations (A1), (A2), (A5) and (A6).

§
g(k) 28T = 5 X(2n) [CRE'T —CiEad =]
A7)
;i_l
h(k) -2SH+F = 5 X(2n+ 1)
[Car™r Ccoap ] (A8)
§-1
g(k) -2CiT= 3 X(2n) [CisP ™D +CR4*P]
(A9)
Ft
h(k) -2CH#F= 3 X(2n 1)
[Cﬁqk/*zlf”mi_’ +C;qn/;hnu}; (A10)
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If we assume X(—1)= 0, we have obtained
the following equations from the (A1),(A4),
(A7), (A8), (A9), and (A10).

x(k) + —ﬁ —X(2n—-1)] CR&P

N/2-1 1 1
+i; IX(2n+1)—X(2n)| Csh b
n=

(A11)

#+ $ K(Chong Yeun PARK) E#A
19514 2 H23A %
1969 3 5 ~1973F 2 A © B AR IE

Fresiss%
(LA+)
19784 3 H ~1980%E 2 B | B L KBREX
M T LR
Blx¥ (L%
)
19804 3 B ~19844E 2 A : MEdb KB RE K8t B - LBHFE
(Tl 1+)
1974% 4 A ~1977% 2 A | REBRABENA AR BF LBS B
Eid-1

19804 3 A ~1984% 8 A | BILITHAR BRY EFT#H
19844 9 A ~19874 5 A B - [LE KB ERTRH (A&
)

N/2-1
x(N—1—k) 2CiF = 51 X(2n) — X (2

No2-1
C<Nk/;;—1(n+;—) +g | X(2n)—X(2n-

1
n(k +z)
CN/2 ¥

Now the equations (32 and (33) are «
from (A1l) and ( A12) respectively.
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