Magazine of the Korean Society of Agricultural Engineers (한국농공학회지)
- Volume 29 Issue 3
- /
- Pages.138-144
- /
- 1987
- /
- 0253-3146(pISSN)
A Study on the Minimum Flow Frequency Analysis by SMEMAX Transformation
SMEMAX변환에 의한 온수빈도분석에 관한 연구
Abstract
This study was conducted to pursue the normalization of frequency distribution by making approach the coefficient of skewness to nearly zero tbrough SMEMAX transformation and to get probable minimum flows can be acquired by means of transforrnation equation which has been derivated by SMEMAX method to the annual minimum flow series of five watersheds along Geum river basin. The results obtained through SMEMAX method were compared with probable minimum flows according to return periods by Type III extremal distribution which has been determined as the best fitted one among probablility distributions for the analysis of minimum flow. All the results obtained through this study are summarized as follows. 1.SMEMAX transformation based on median value was proved to be the best method when the coefficient of skewness has less reliability because of the short duration for the observation and were not affected by accidental outliers. 2.SMEMAX transformation has found to be the best one for the coefficient of skewness to be made nearly zero in comparison with log and cubic root transformation. 3.Probable minimum flows according to the return periods were derivated by transformation equations obtained through theoretical analysis of SMEM AX transformation. 4.In general, probable minimum flows by SMEMAX method were appeared as higher values in the range of five and twenty years and as lower ones in the range of below than five and more than fifty years in return periods respectively, in comparison with the results of type III extremal distribution. 5.Relative errors in the probable minimum flows of SMEMAX method to the results of type III extremal distribution were shown to be within ten percent except those of one hundred years in return periods. 6.SMEMAX method was also confirmed to be useful for the analysis of minimum flow frequency as well as flood frequency analysis.
Keywords