Effect of Nifedipine on Renal Function in Dogs

Nifedipine의 개 신장기능에 미치는 영향

  • Published : 1987.12.01

Abstract

This study was performed in order to investigate the effect of nifedipine, a vasodilating drug which acts through calcium antagonism, on renal function using mongrel dog. Nifedipine, when given interavenously in doses ranging from 1.5 to 5.0$\mu\textrm{g}$/kg, elicited diuresis along with less changes of glomerular filtration rate and significant increases of renal plasma flow, so that the filtration fraction(FF) decreased significantly, at the same time both osmolar and free water clearances increased, and amount of sodium, potassium and calcium excreted in urine increased significantly. Nifedipine, when infused into a renal artery in doses from 0.05 to 0.15$\mu\textrm{g}$/kg/min, exhibited identical responses to the actions of intraveneous nifedipine except significant increase of glomerular filtration rate and no change of FF, which was confined only to the infused kidney. The renal action of nifedipine into a renal artery were not influenced by renal denervation, decreased significantly by ouabain, Na$^+$-K$^+$-ATPase inhibitor, which was given into a renal artery. Nifedipine infused into a renal artery in dog pretreated with propranolol i.v. produced diuresis associated with the increase of electrolytes excretion by reduction of electrolyte reabsorption and with no changes of glomerular filtration rate and renal plasma flow. Thus, it is concluded that nifedipine infused into a renal aretery produces diuretic action along with both improvement of hemodynamics and inhibition of electrolytes reabsorption, which may be related to sympathetic $\beta$-receptor or Na$^+$-K$^+$-ATPase activity because the action of nifedipine in kidney is blocked by propranolol or ouabain.

Keywords

References

  1. J. Pharmacol. Exp. Ther. v.223 Diuretic and natriuretic effects of nifedipine on isolated perfused kidney Marre,M.Misumi,J.;Raemsch,K.D.;Corvol,P.;Menard,J.
  2. Am. Heart J. v.96 Antihypertensive effect of cardiovascular Ca++ antagonist in hypertensive patients in the absence and pressure of beta-adrenergic blockade Aoki,K.;Kondo,S.;Mochizuki,A.;Yoshida,T.;Kato,S.;Kato.K.;Takikawa,K.
  3. Jpn. Heart J. v.17 Hypotensive action and increased plasma renin activity by antagonist (nifedipine) in hypertensive patients Aoki,K.;Yoshida,T.;Kato,S.;Tasumi,K.;Sato,I.;Takawa,K.;Hotta, K.
  4. Arzneim-Forsch/Drug Res. v.22 Der Einfluss Von Bayer A 1040 auf die Nierenfunktion des Hypertonikers Klutsch,K.;Schmidt,P.;Grobwendt,J.
  5. Calcium Antagonismus Blockade of renal autoregulatory vasoconstriction by calcium antagonists Hashimoto,K.;Ono,H.;O’Hara,N.;A.Fleckenstein(ed.);H.Roskamm(ed.)
  6. Current problems in Clinical Biochemistry:6-Renal Metabolism in Relation to Renal Function The effect of Ca ion antagonist verapamil on ouabain inhibition of renal sodium reabsorption studies in the isolated perfused rat kidney Schurek,H.J.;Aubert,E.;Ebel,H.;U.Schmiat(ed.);U.C.Dubach(ed.)
  7. Farmakol. Toksikol v.43 Effect of verapamil on kidney function Berkhin,E.B.;Gurevich,V.V.
  8. Clin. Ther. v.3 Effects of benzothiazepine derivatives(CRD-401) on blood pressure, excretion of electrolytes, and plasma renin activity Funyu,T.;Nigawara,K.;Ohno,K.;Hamada,W.;Yagihashi,T.
  9. Arzneim-Forsch/Drug Res. v.29 The effect of diltiazem hydrochloride upon sodium diuresis and renal function in chronic congestive heart failure Kinoshita,M.;Kusukawa,R.;Shimono,Y.;Motomura,M.;Tomonaga,G.;Hoshino,T.
  10. J. Pharmacol. Exp. Ther. v.228 Renal effects of methoxyverapamil in anesthetized rats Brown,B;Churchill,P.
  11. J. Pharmacol. Exp. Ther. v.228 Renal tubalar site of action of felopidine Dibona,G.F.;Sawin,L.L.
  12. J. Clin. Invest. v.56 Effects of acute unilaferal renal denervation in the rat Elas,B.R.;Romulo,E.C.;Enrique,P.M.;Robert,A.M.;Carl,W.G.
  13. Quantitative Clinical Chemistry v.2 Philips,R.A.;J.P.Peters(ed.);D.D.van Slyke(ed.)
  14. J. Clin. Invest. v.24 The renal clearance of substituted hippuric acid derivatives and other aromatic acids in dog and man Smith,H.W.;Finkelstein,N.;Aliminosa,L.;Crawford,B.;Graber,B.
  15. Statistical Methods(6th ed.) Snedecor,G.W.;Cochran,W.G.
  16. Am. J. Physiol. v.220 Effect of ouabain on metabolic rete in renal corte and medalla Sejersted,O.M.;Lie,M.;Kill,F.
  17. Am. J. Physiol. v.220 Oncotic and hydrostatic pressure in pertubalar capillaries and fluid reabsorption by the proximal tubules Falchuk,K.H.;Brenner,B.M.;Takodoro,M.;Barliner,R.W.
  18. Kidney Int. v.9 Proximal sodium and fluid transport Windhager,E.E.;Giebisch,G.
  19. J. Clin. Invest. v.45 The effect of combined renal vasodilation and pressor agents on renal hemodynamics and the tubular reasorption of sodium Earley,L.E.;Friedler,R.M.
  20. Am. J. Physiol. v.220 Effect of acetylcholine on proximal tubular sodium reabsorption in the dog Stein,J.H.;Reineck,J.H.;Osgood,R.W.;Ferris,T.F.
  21. Am. J. Physiol. v.222 Permeability changes of the prorimal tubule of necturus kidney during extracellular volume expansion Boulpaeep,E.L.
  22. J. Clin. Invest. v.51 The effect of bradykinin on proximal tubular sodium reabsorption in dog:Evidence for functional nephron heterogeneity Stein,J.H.;Congbalay,R.C.;Karsh,D.U.;Osgood,R.W.;Ferris,T.F.
  23. Physiology of the kidney and Body Fluid(3rd ed.) Pitts,R.F.
  24. Annu. Rev. Physiol. v.41 Renal handling of phosphate and calcium Dennis,V.W.;Stead,W.W.;Myers,J.L.
  25. J. Clin. Invest. v.144 The site of action of furosemide and other sulfonamide diuretics in the dog Suki,W.;Retor,F.C.Jr.;Seldin,D.W.
  26. Am. J. Physiol. v.229 Renal neuroadren ergic transmission Slick,G.L.;Aguilera,A.J.;Zambrask,E.J.;Dibona,G.F.;Kaloyanides,G.F.
  27. J. Physiol.(Lond) v.196 Renal sodium reabsorption after acute nenal denervation in rabbit Blake,W.D.;Jurf,A.N.
  28. J. Physiol.(Lond) v.204 Change of tubular reabsorption of sodium and water after renal denervation in the dog Bonjour,J.P.;Churchill,P.C.;Malvin,R.L.
  29. Recent Advances in Renal Physiology. International symposium on renal handling of sodium Tubular factors in denervation diuresis and natriuresis Bencsath,P.:Bonvalet,J.P.;de Rouffigac, C.;H.Wirz(ed.);F.Spinelli(ed.)
  30. Am. J. Physiol. v.236 Possible role of cytosolic calcium and Na+-Ca+ exchange in regulation of transepithelial sodium transport Taylor,A.;Windhager,E.E.
  31. Int. J. Biochem. v.12 Calcium-activated adenosine triphosphatase along the rabbit nephron Katz,A.I.;Doucet,A.
  32. Ca++拮抗藥一基礎と臨床 平則夫;木村一;平則夫編
  33. Am. J. Physiol. v.226 Pitutary Ca++ uptake and release of ACTH, GH, and TSH: Effect of verapamil Eto,S.;Wood,J.M.;Hutchins,M.;Fleischer,N.
  34. Annu. Rev. Phamacol. Toxicol. v.17 Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle Fleckenstein,A.
  35. Kidney Int. v.16 Reversal of renal cortical actions of angiotensin Ⅱ by verapamil and manganase Ichikawa,I.;Miele,J.F.;Brenner,B.M.
  36. Am. J. Physiol. v.221 Effect of amiloride, ouabain and furosemide on distal tubular function in the rat Duante,C.G.;Chomsty,F.;Giebisch,G.
  37. Am. J. Physiol. v.200 Effect of strophanthin on the renal tubules of dogs Cade,J.R.;Shalhour,R.J.;Canessa-Fischer,M.;Pitts,R.F.
  38. Am. J. Physiol. v.190 Effect of strophanthin on electrolyte excretion in the chicken Orloff,J.;Burg,M.
  39. Arch. Ges. Physiol. v.306 Activity of (Na+,K+)-stimulated adenosine triphosphatase in the rat nephron Schmidt,U.;Dubach,U.C.
  40. Biochem. J. v.85 Some properties of a kidney adenosine triphosphatase relevant to active cation transport Wheeler,K.P.;Whittani,R.
  41. J. Clin. Invest. v.46 The role of sodium-potssium activated adenosine triphosphase in the reabsorption of sodium by the kidney Katz,A.I.;Epstein,F.H.
  42. Am. J. Physiol. v.201 Renal sodium transport and oxygen consumption Kim,F.;Aukland,K.;Refusum,H.E.
  43. Acta Physiol. Scand. v.51 Oxygen consumption and sodium reabsorption in the kidney Lassen,N.A.;Munck,O.;Thaysen,J.H.
  44. Am. J. Physiol. v.242 Renal Na+-K+-ATPase. Its role in tubular sodium and potassium transport Katz,A.I.
  45. Pflugers Arch. v.390 Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process Greger,R.