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A NOTE ON FUZZY TOPOLOGY, FUZZY GROUPS
AND FUZZY TOPOLOGICAL GROUPS

Gyvu TuN CHAE

1. Introduction

Zadeh’s introduction [17] of the notion of a fuzzy set in
a universe could generalize and extend main concepts and
structures of the presentday mathemmstics intothe framework
of fuzzy sets. Goguen [6] has studied and generalized the
work of Zadeh. The most generalization was the considera-
tion of order structures beyond the unit closed interval.
The concept of a fuzzy topological space and some of its
basic notions have been studied by Chang [4] as one of
applications of concepts of a fuzzy set. In the development
of a parallel theory based on fuzzy sets, many interesting
phenomena have been observed. For example, the concept
of compact fuzzy topologzical spaces introduced in the liter-
ature by Chang holds only for finite products. The next
compactness results by Goguen are an Alexander Subbase
Theorem and a Tychonov Theorem for finite products and
he was the first to point out a deficiency in Chang's com-
pactness. Weiss [15] and Lowen [8] introduced new de-
finitions of compactness in a fuzzy topological space which
is available for the infinite products. However, the defini-
tion of a fuzzy topological space by them has been pointed
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out that it has the great deficiency that its definition

is not the generalization of an ordinary topological space.

In [13] Resenfield has used the notion of a fuzzy set to
develop theory of flizzy groups. In [1] authors have point
out a deficiency in Rosenfield's definition of fuzzy groups.
They have used a different structure to define a fuzzy
group. The structure is one of stronger conditions than
Rosenfield’s. Foster [5]) has introduced a fuzzy topological
group by use of definitions of Lowen’s and Rosenfield’s.
In [11] authors defined a fuzzy topological group by use
of the concept of @-neighborhood introduced in [12] and
showed that thier definition and Foster’s definition are
equivalent under some condition.

Let X be an ordinary nonempty set which we will call the
universe. A fuzzy set A in X is a function on X into the
closed unit interval [0,1], assigning each x in X to its
grade of membership A(x) in A. The grade of membership
function is often called a gemeralized characteristic func-
tion. Fuzzy set operations; inclusion, union, intersection,
generalized union and intersection, complement; are defined
by use of <, max, min, sup and inf, 1—, similarly to
the corresponding notions in ordinary set operations, resp-
ectively. It is one of important problems that it was shown
that in Zadeh's structure of fuzzy set theories the class of
generalized characteristic functions is a distributive but
noncomplementary lattice and it is just a Brouwerian lattice.
Roughly to speak, AN A’=¢ does not hold in the fuzzy
structure, where A’ denotes the complement of A. In fuzzy
structure there are problems left, for example, a fuzzy

point, compactness in fuzzy topological spaces, fuzzy
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neizhborhoods problems.
In this paper we will use definitions which, we think,

are most suitable in the presentday publications. We can

find definition without mentions in the available references.

2. Fuzzy points, fuzzy topologies and fuzzy
neighborhoods.

How to define a fuzzy point reasonably in a fuzzy set
is one of fundamental problems in fuzzy structures. In (12,
16, 17) a fuzzy point was defined in different ways, We
will follow the definition in {12, 17], named a fuzzy point
instead of a fuzzy singleton in [6].

DerFNITION 2.1. A fuzzy set in X is called a fuzzy point
if it takes the value O for all point ¥ in X except one, say
z in X, If its value at x is %2 in (0, 13, then we will
denote the fuzzy point by a lowercase letter z(Z&).

DEFINITION 2.2. Let x(%) be a fuzzy point and A a fuzzy
set in a universe X. Then x(&) is said to be in A or A
contains x(k), denoted by z(£)&A (or simply (%) in A),
if 2<<A(x) all z in X,

Evidently every fuzzy set A can be expressed as a union
of all fuzzy points which belong to A. As we will know
later on, the concept of fuzzy points is very important
for the construction of fuzzy neighborhood in fuzzy topo-
logical spaces. When a mapping between universes is de-
fined, the inverse image and image of fuzzy sets in them

were defined almost similarly to those in ordinary sets.

DeriNiTioN 2.3. Let f: X—Y be a mapping of universe X
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into universe Y, and A and B fuzzy sets in X and Y,
respectively. Then the inverse image of B, f1(B), is the
fuzzy set in X with membership given by f U B)(z)=
B( f(x)) for all  in X and the image of A, f(A), is the
fuzzy set in X with membership given by
f(A)(y)=zE§:}llI:y) A(z), if fFUy)FS

= { , otherwise

for all ¥ in Y, where f"i(y)={z|f(x)=y)}.

DeriNITiON 2.4. Let A and B be fuzzy sets in universes
X and Y, respectively. The fuzzy product AXB of A and
B is defined as the fuzzy set in the usual set product Xx Y
with the membership given by AXB(x, y)=min (A(z),
B(x)) for all (z,y) in XX Y.

ProPosITION 2.5. Let p, be the projection of XX X, into
X,, for i=1,2, and A=A,X A4, a fuzzy product in X;x X,.
Then 2,(A)YCA,;, for each i=1,2.

Proor. If i=1, p1(A)(x)= sup _A(z,2,)

(z,, zz)EP;x (xd

= sup min(A(2:), A:(z5))

(=, zz)ekl_l(zl)
=min( A (&), 2 supx,A:(z,))
for all x; in X,. Similarly we can prove the case of

t=2.

Let X be a universe. Then a family 7 of fuzzy sets in
X is called a fuzzy topology on X if (i) ¢, X =7, where ¢
is a fuzzy empty set (ii) If 4, B& 7, then ANB & 7 (iii)
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If A,€7 for all i€l, then UA, &7. The pair (X, 7)

1<t

is called 2 fuzzy topological space(for short, fts) and
the members of 77 are called T-open fuzzy set. The
complement of a 7-open fuzzy set is called a <7-closed
Juzzy set. We will drop 7 without confusions. If 7
and 77, are fuzzy topologies on a universe X and 7, C 7,
then we say that 77, is finer than 7, or 7, is coarser
than 7, A base and a subbase of an {ts were defined as
the similar way in an ordinary topological space and the
interior of a fuzzy set is defined as the largest open fuzzy
set contained in the fuzzy set and the closure of a fuzzy
set is defined as the smallest closed fuzzy set containing
the fuzzy set. The properties of the interior and. the clo-
sure are like those in the usual topological spaces.

The neighborhood of a fuzzy point in an fis has been
defined in different manners [4,6,8,12,15,16]. A {fuzzy
set N in an fts (X, 7) is called a neighborhood(for short,
nbd)} of fuzzy point x(k) if there is an O in 7 such that
x(R)= 0O CA. In {121, corresponding to this, authors have
defined a more reasonable definition by use of a new con-
cept. We will use it.

DEerFINITION 2.6. A fuzzy point x(k) is said to be quasi-
coincident with a fuzzy set A, denoted by z(k) ¢ A, if
k> A'(x) or k+A(x)>1. The quasi-coincident with two
fuzzy sets A and B, denoted by A ¢ B, means that there
exists x in X such that A(x)>B'(x), or A(x)}+B(x)>1,

DEFINITION 2.7. A fuzzy set N in an fts (X, 7) is called
a Q-nbd of x(k) if there is an O in 7 such that z(k)
g OCN; a nbd N 1is said to be open iff N is open.
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It was shown in [10] that ACB iff A and B’ are not
quasi-coincident ; x(%) is in a fuzzy set A iff x(%&) is not
quasi-coincident with A’. From the fact, the substitute for
the fact that A and A’ do not intersect in general topology
is the fact that A and A’ are not quasi-coincident in fuzzy
topology. This means much suitability for definition,
while in Zadeh's theory the class of generalized char-
acteristic fuctions is just a Brouwerian lattice.

Let (X,7) be an {ts and A a fuzzy set in X. It is easy
to prove that the family 7 ,={ANUIU&E 7} is a fuzzy
topology on A. Thus we say that the pair (A, 7,) is called
a fuzzy subspace of (X,7). A mapping f of an fts (X, 7)
into an fts (Y, %) is said to be fuzzy comntinuous (for
short, F-continuous) if, for each B in %, f"Y(B) is in 7.
We will denote a mapping f an fts (X, 77) into an fts
(Y,%) by f: (X, 7)-(Y,%).

ProrosiTION 2.8. Let f: (X, 7)—(Y, %) be a mapping.
Then the following are equivalent:

(1) f is F-continuous.

(2) For each % -open fuzzy set V, f (V) is 7-open
fuzzy set.

(3) For any nbd V of f(x(%k)), there exists a nbd U
of x(%k) such that fF(U)CV.

(4) For each fuzzy point x(%) in X and each @-nbd V
of f(x(k)), there exists a @-nbd U of 2(%&) such that
AUV,

Proor. We will prove (1)¢<=(4) and leave the remainder
for readers.
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Let f(x)=y. Then f(x(k))=y(k) from definitions.
Since V is a @-nbd of f(x(£)), thereis W in % such
that W C V and W(y)+£>1. Let fYW)=U. Then U
is in 7 and U(x)+i=W(y)+4.>1. Thus Uis a @-nbd
of (%) and f(U)=ffY(W) < V. The converse is obvious.

REMARK 2.9. It is easy to prove that the restriction of
a mapping f of (X,7) to (Y,%) and the composition g=f
of f and g is F-continuous if f and g are F-continuous
and we can get some theorem for complete condition to be
F-continuous by means of interior, closure and so on.

DeginiTioN 2.10. Let (A,7.) and (B,%;) be fuzzy sub-
spaces of fts's (X, 7) and (Y, %), respectively. Then a
mapping f: (A, T4)—(B,%s) is said to be relatively fuzzy
continuous (for short, RF-continuous) if, for each W in

Ue, FTUYW)INA is in T,

ProrositioN 2.11. Let f: (X, 7)—(Y,%) be fuzzy conti-
nuous and (A, T4), (B, 7s) fuzzy subspaces, respectively.
If f(A) < B, then f:(A, Ta)—(B,%s) is RF-continuous.

Proor. To apply Proposition 2.8, let a € A and N a Q-
nbd of f{a) and f(a)=b. Then f(a(k))=5b(k). Since N
is a @-nbd of f(a(%)), there is a V in %, such that 5(%)
gVCN, that is, VCN, V(y)+&>1. Since V is in U s,
there is an OE% such that V=BNO. Thus fYV)=
FHBUOY=AUS0O). So we have fHV)ET, because
FUOYET from the F-continuity of f. Let U=f (V).
Then U is a Q-nbd of a(k) such that f(U)CV.

DEFINITION 2.12. Let {(X, 7:))i € 1) be a family of fts's
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and X= Il X, the usual set product. Then (X, 7) is called

€1
the product fts if 7 is the coarsest fuzzy topology on X
such the projection p; of X onto X, is fuzzy continuous for
each ¢ & I. The fuzzy topology 7 is called the product
Juzzy on X.

REMARK 2.13. Since the concept of the product fts is
almost similar to that of the product space in the usual
sense, Thus it can be shown that the product fuzzy topo-
logy 7 on X has the fuzzy set of the form p (U,) as a
subbase where U, is in 7;, i&l. Therefore, the base for
7 is the form of finite intersection of {p;" (U NU.ET,}.

ProvostrionN 2,14, Let {(X, 7)), i€l be s fmmily of
fts's, (X, 7) the product fts and f:(Y,%)—(X,7) a map-
ping. Then f is F-continuous iff p,of is F-continuous
for each 1.

Proor. Let B&7,. Then (p,of ) U B)=(flop, 1) B) is
in /. Hence [( fl{p,"YB)DI & I} is a family of 9/ -open
fuzzy set in Y. Since f! preserves union and intersection
in fuzzy sets as well as in ordinary sets, f is F-continuous,
The converse is trivial.

ProrosITION 2.15. Let (X,77) be the product fts of
{(X,, THli=1,2, -, n}. Let each A, be fuzzy set in X; and
A a product fuzzy set in X. Let B be a fuzzy set in a

fts (Y. %) and f: (B, %5) — (A, 74) a mapping. Then f is
RF-continuous iff p;of is RF-continuous for each i & I.

Proor. Apply Propositions 2.5, 2.11 and Remark 2.13.

ProrosiTioN 2,16. Let A and B be fuzzy sets and C the
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product fuzzy set of fts's (X, 7), (¥,%) and (Z, V) the
product fts, respectively. Then for each @ &€ X such that
A(a)>B(y) for all ¥y in Y, the mapping [i: y—(a,y) of
(B,%5) into (C,%"¢) is RF-continuous.

Proor. We have {(B) C C from the membership function
of 7(B) and the concept of product fuzzy set. It is shown
that the identity and constant mappings are F-continuous.
From this and the F-continuity of composition, we apply
Proposition 2.14. Let #,:y—a and i:y—y be mappings.
Then i=1i;0i,, Using Proposition, the proof is complete.

3. Fuzzy groups and Fuzzy topological groups.

Rosenfield [13] has defined a fuzzy groups to extend
and to generalize the notion of groups structures; let X be
a universal group and G a fuzzy set in X with the grade
of membership G(z) for all = in X. Then G is called a
Juzzy group in X if, for every z,y in X, (i) Glzy)>
min(G(z), G(y)) (ii) G(x™)>G(x). In [1] authors pointed
out a deficiency in it and gave examples which are groups
in usual sense, but not fuzzy groups in sense of Rosenfield,
This means that a fuzzy group may be not a generaliza-
tion of a groups. To get rid of the default, they have used
different operator, so called ¢-norm, to define a fuzzy

group.

DEFINITION 3.1. A t-norm is a function 7':[0,11X[Q,1]
—{0, 17 satisfying; for each a,b,¢,d in [0,1],

(1) T(0,00=0,T(a,1)=a=T (1,a)(boundary conditions)
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(2) T(a,b)<T(c,d) whenever a<c,b<d (monotonicity)
(3) T(a,bY=T(b,a) (symmetric)
(4) T(T(a,b),c)=T(a, T(b,¢)) {associativity)

ExampLE 3.2. Ty is defined by the boundary conditions
and Tg(a,b)=0 for each (@, &) in [0,1)x{0,1), min(a, /),
T,=max(0,a+5b—1) and Prod(a, b)=ab are f-norms.

REMARK 3.3. The £-norms in Example 3.2 hold obviously,
(1) Tw(a, )< Tu(a, b)<Prod(a, b)<min(a, b)
(2) For any ¢-norm T, Ty(a, b)<T(a,b)<min(a, b)

DerFiNITION 3.4. Let X be a universal group and G a
fuzzy set in X. Then G is called a fuzzy group in X if,
for each z,y in X, (i) G(xy)>T(G(x), G(y)) (i) G=™)
>G(x), where T is a ¢t-norm defined.

ProrosiTioN 3.5. G is a fuzzy group in X iff, for every
z,y in X, Glxzy )>T(G(z),G(¥)).

Proor. Let G be a fuzzy group in X. Then G(zy1)>
T(G(x), Gy ))>T(G(x),G(y)) because Gz ')>G(x)
for all x in X and from the monotonicity of 7. The con-
verse follows from [13, 5.6] because we can replace min by
T from Remark 3.3 and is thus omitted.

ProposiTION 3.6. Let f be a homomorphism of group X
into group Y in usual sense G a fuzzy group in Y. Then
the inverse image f"1(G) of G is a fuzzy group in X.

Proor. For all x,y in X, applying Proposition 3.5,
F UG (xy D =GC(f(xyN=G(f()(fOND=T(G(f(x)),
GUf(M™HZT(G(Sf(x)), GLAMN.
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ReMARrRK 3.7. Similarly, it can be shown without much
difficulty that the imaze f(G) of a fuzzy group G under
the homomorphism f(in usual sense) is a fuzzy group.

PropPoSITION 3.8. Let G be a fuzzy group in a group X

and ¢ the identity in X. Then G(z™!)=G(x) and G(x)<
G(e).

ProoF. G(2)=G{({zH ) > G(z™) > G(x) for all x in X.
The remainders can be shown similary to Proposition 3.5
and are thus omitted.

Kaufmann [7] has introduced the concept of ordinary
subset of level £ of a fuzzy set to decompose a fuzzy set into
a ordinary set. Lat A be a fuzzy set of X. Then the ordi-
nary set Ay={x=X|A(zx) > ¢} is called a level subset of
fuzzy set A. He has shown that every fuzzy set can be de-
composed as products of ordinary susets (i.e., the level
subsets) and 2 number in [0,1]. Thus some questions will
be arised; what a level subset of a fuzzy group of a uni-
versal group will be a subzroup of the group? One of the
answer is, so-called, level subgroup, the level subset
A;={zeX|t<Ale), t=[0,1] and e is the identity in X 1. It
can prove that the A; is a subgroup in X; The pumber of
such level subgroups in X may depend on £ Since £&{0, 11,
there can be an infinite number of level subgroups in X
although X is finite. However it means a contradiction
because the number of all subsets of a finite group must
be finite. Thus we have a question: when level subgroups
of a fuzzy groups are equal each other?

Let G be a fuzzy group X and G,={z€X|G(z)=G(e)}.
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Then G, is one of level subgroups in X and for a€ X, let
r.: x—xa and I, x—ax denote, respectively, right and
left translations of X into itself.

PropPoSITION 3.9. Let G be a fuzzy group in a group X.
Then for all a=G,, 7 (G)=I1,(G)=0G.

Proor: Let a&=Gg. Then e '€G, since G, is a subgroup.
Since G(e)=1 and T(%,1)=k, {,(G(x))=G(xa )>T(G(x),
G(e))=G(x)=G(xaa)>T(G(xal), Gle))=G(zxa)=1,
(G(x)) for all x in X. The proof for 7, is similar to
this.

We will study properties of fuzzy topological groups(for
short, ftg) from new emn. TFoster (5] has defimed-an ftg by
means of the fts in sense of Lowen and the fuzzy group
in sense of Rosenfield. In [11] authors have defined it by
use of @-nbd of fuzzy points and showed that their con-
cept is equivalent to Foster’'s. We will apply the defini-
tions in this mnote to define an ftg.

Let X be a universal group and A, B fuzzy sets in X.
We define AB and A™! by the respective formulas; AB(zx}
=sup min(A(¥), A(2)) and A1 (x)=A(x™!) for each z in

yz=x

X.

DEerFINITION 3.10. Let X be a universal group and (X, 7)
an fts. Let G be a fuzzy group and (G, 7)) a fuzzy sub-
space of (X,7). Then G is called an fig if

(i) The mapping g: (z, ¥)—zy of (G, T:) X (G, 7¢) into
(G, 7)) is RF-continuous.
(i1) The mapping h:xz—z"! of (G, 7s) into itself is RF-
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continuous.

ExampLe 3.11. Let X=(R,+) be the usual topological
group. Let [ be a family of all lower semicontinuous fun-
ctions of X into [0,1]1. Then (X, L) is ftg because [ is a
fuzzy topology on X,

ProposITION 3.12. Let X be a universal group and (X, 7)
an fts. Then a fuzzy group G in X is an ftg iff the map-
ping f: (z,¥)—>zy™t of (G, T)X(G,Ts) into (G,7s) is

RF-continuous.

ProoF. We can get from Proposition 2.15 that the map-
ping f is RF-continuous. Since the camposition of RF-
continuous mappings is RF-continuous, the composition
(x, y)—=(z, y)—xy 1 is RF-continuous. Conversely, let e
be the identity in X, then we have G(z)<G(e) for all x
in X from Proposition 3.8. Let 7 be 2 mapping of (G, 7o)
X (G, Te) such that i:y—{e, y). Then ¢ is RF-continuous
from Proposition 2.16 and A:zx—2x"1is a composition of z—
(e, x)—ex™!, Hence 2 is RF-continuous. Similarly, g:(x, )
—(z, yH)—-x(y") ! is RF-continuous.

ProposiTiON 3.13. Let X be a topological group. Then
X is an ftg iff for any @-nbd W of @b '(£), there are
&-nbds U of a(k) and V of b(%) such that UV IiCW.

ProoF. It is similar to the proof in general topological

groups and so is omitted.
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