SOME PROPERTIES OF PROJECTIVE REPRESENTATIONS OF SOME FINITE GROUPS

CH. HWANG

The representation group G^* of metacyclic group G=BH, $H \triangle G$ is known. When |B| is prime, representation G^* can be easily obtained. Using this fact, some properties of projective representation of G will be discussed.

THEOREM 1. Let $G = \langle x, y | x^n = 1, y^p = 1, y^{-1}xy = x^r \rangle$ where (n, r) = 1, p is prime. Then the number of irreducible projective representation with degree 1 is p(n, r-1) and the degree of the irreducible projective representation of G is one or p.

PROOF. $H^2(G, K^*) \cong \mathbb{Z}_q$ where $q = \frac{k(n, r-1)}{n}$, $k = (n, \frac{r^p-1}{r-1})$. By [3] the representation group G^* of G is

$$\langle x, y, z | x^n = 1, y^p = 1, z^q = 1, y^{-1}xy = zx^r, xz = zx, yz = zy \rangle.$$

Also $\langle x, z \rangle \neg G^*$, $\langle y \rangle < G^*$ and $\langle x, z \rangle$ is abelian. So G^* is the semidirect product of $\langle y \rangle$ by $\langle x, z \rangle$.

Let T be a representation of $\langle x, z \rangle$. We define $T^a:h \longrightarrow T(a^{-1}a^h)$ for $h \in \langle x, z \rangle$ and $a \in \langle y \rangle$. Then $S_T = \{y^k \in \langle y \rangle | Ty^k \cong T\}$ is a subgroup of $\langle y \rangle$. Since $|\langle y \rangle|$ is prime, $S_T = \{e\}$

CH. HWANG

or $S_T = \langle y \rangle$. So by [4], $S_T = \langle y \rangle$ iff $(T \otimes \rho)$ has degree 1, where ρ is an irreducible representation of $\langle y \rangle$.

All the irreducible representation whose degree is 1 has the form $T \otimes \rho$. So we have

$$Ty^{k} \cong T \text{ iff } Ty^{k}(x^{i}z^{j}) = T(x^{i}z^{j})$$

$$\text{iff } Ty^{k}(x^{i}z^{j}) = T(y^{-k}x^{i}z^{i}y^{k})$$

$$= T(x^{ir^{k}}z^{j+(1+r+\cdots+r^{k-1})})$$

$$= T(x)^{ir^{k}}T(z)^{j+(1+r+\cdots+r^{k-1})}$$

$$= T(x)^{i}T(z)^{j}$$

$$\text{iff } T(x)^{i(r^{k-1})} = 1 \text{ and } T(z)^{1+r+\cdots+r^{k-1}} = 1$$

$$\text{iff } d_{1}\frac{1-r^{k}}{1-r} \equiv 0 \pmod{n} \text{ and } d_{2}\frac{1-r^{k}}{1-r} \equiv 0 \pmod{q}$$

where $T(x) = \xi_1^{d_1}$, $T(z) = \xi_2^{d_2}$. $(\xi_1, \xi_2 \text{ are } n, q \text{-th roots of } 1, \text{ respectively.})$

So

$$S_T = \langle y \rangle$$
 iff $d_1(1-r^k) \equiv 0 \pmod{n}$ and
$$d_2 \frac{1-r^k}{1-r} \equiv 0 \pmod{q}$$

for all k, $0 \le k \le p-1$ and

$$S_r = \langle y \rangle$$
 iff $d_1(1-r) \equiv 0 \pmod{n}$,

because $(1+r, 1+r+r^2, ..., 1+r+...+r^{k-1})=1$. So such $\{d_1\}$ is (n, r-1). Therefore $\{T \otimes \rho\}$ is p(n, r-1).

Since S_r is $\{e\}$ or $\langle y \rangle$, the degree of irreducible representation G^* is 1 or p. So the degree of projective irreducible representation of G is 1 or p. So our proof is completed.

THEOREM 2. Let $G = \langle x, y | x^x = 1 = y^p, y^{-1}xy = x^r \rangle$ with (r, n) = 1, p prime, and $1 + r + \dots + r^{p-1} \equiv 0 \pmod{n}$.

- (1) Then p=q, p|n and $H^2(G, K^*) = \{1, \{\alpha\}, \dots, \{\alpha^{p-1}\}\}.$
- (2) For each $\{\alpha^k\}$, there exists exactly n/p linearly inequivalent projective representations with factor set $\{\alpha^k\}$.
- (3) In this case

$$T_{ki}(x) = \operatorname{diag}\{\xi^{k+i}, \ \xi^{k(1+r)+r_i}, \dots, \xi^{k(1+r+\cdots+r^{p-1})+r^{p-1}i}\},$$

$$T_{ki}(y) = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1\\ 1 & 0 & \cdots & 0 & 0\\ 0 & 1 & \cdots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix},$$

$$T_{ki}(y^{j}x^{j}) = T_{ki}(y)^{j}T_{ki}(x)^{j},$$

and

$$\alpha(y^j x^i, y^l x^m) = \xi^{(1+r+\cdots+r^{l-1})i},$$

where ξ is a primitive n-th root of unity.

PROOF. In this situation we have $k=(n, \frac{r^p-1}{r-1})=n$, q=k(n,r-1)/n=(n, r-1)=d. Therefore $r^p-1=(r-1)(r^{p-1}+\cdots+1)\equiv 0\pmod{n}$ and hence $0=1+r+\cdots r^{p-1}=1+1+\cdots+1\equiv p\pmod{d}$. But p is prime so d=1 or d=p. So d=q=1, $H^2(G,C^*)=\{e\}$, d=p=q, and p|n since (n, r-1)=d=p=q. Now by [1], T_{ki} is a projective irreducible representation of G wich degree p with the factor set $\{\alpha^k\}$. Also their equivalence can be found in [1]. So for each $\{\alpha^k\}$ we have n/p linearly inequivalent projective representation.

References

- [1] Seung Ahn Park, Projective representation of some finite groups, J. Korean Math. Soc. 22(1985), 173~180.
- [2] Curtis, W.C. and Reiner, I., Representation Theory of Finite Groups and Associative Algebras, Pure Appl. Math, Vol. 11, Interscience, New York, 1962.
- [3] ______, Methods of Representation theory, Vol. 1, Wiley Interscience, 1981.
- [4] J-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, GTM 42, 1964.

Sanub University Pusan 601 Korea

Received May 18, 1987