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Sensitivity Analysis of
Nonlinear Chance-constrained Problem

Kim, Kwang- Bok"

1. Introduction

The problem presented here is equivalent to a stochastic linear programming problem of the
chance-constrained type. In the chance-constrained problem, the constraint coefficients are normally
distributed random variables. Charnes and Cooper proposed the deterministic equivalent for the
stochastic linear problem. The determination of least-cost optimal cattle feed using the associated
NLP was modeled by van de Panne and Popp.

Tl"le problem concerns the mixing of a number of raw materials in such a way that a hog ration
is obtained that satisfies certain specified nutritive and other requirements with minimum cost for the
input costs of raw materials and the requirements for the nutrients are known, the problem can be
solved in a straightforward manner by deterministic linear programming methods.

The problem that arises is that the nutritive content of raw materials varies randomly from batch
to batch, so that the solution given by linear programming using expected (mean) values, for instance,
does not always satisfy the requirements. That is, using the expected values from a normal distribu-
tion, there is only a 50% probability that the nutritive requirements of the ration will be satisfied.

Table 1-1 gives the data for a typical case. The percentage content of protein, calcium, and
phosphorus are given for 13 constituents. The cost per ton (in hundreds of dollars) is given for each
constituent. The requirement of protein, calcium, and phosphorus are given for starter pigs, growers,
and finishers.

The problem is to determine the mixture with minimum cost per ton that satisfies the given
requirements. The problem was solved using SENSUMT computer code and sensitivity analysis are

conducted with respect to the standard deviations, cost and nutritive requirement level.
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2. Deterministic Linear Programming Model

In order to compare the merits of both the linear and nonlinear models of this problem, solu-
tions are obtained for both. First we formulate the linear problem using mean values.

If the nutritive contents and unit costs of raw materials and the requirements for the nutrients
are know, this problem can be solved in a straightforward manner by deterministic linear programming
methods.

The deterministic linear programming model is as follows:

13
Minimize f=2X2 r;x;

i=1

subject to
13
S §5x;>18
i=1
13
b G;XiZI
i=1
13
S 9x,>0.9
1=1
13
> Xi=l
i=1
=20 i=1, 2, - 13
where

X 0 = 1, 2, ..., 13, denote the fraction of the mixture that is composed of each of the con-
stituents.
pi=1, 2, ..., 13, denote the cost per ton in hundreds of dollars of each constituent.

S:

TS and v;,i=1,2, .., 13, denote the percentage content for protein, calcium, and phosphorus,

respectively.
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Table (1-1a) Data for Least-Cost Hog Ration . Problem

Fraction Cost/ton % protein % calcium % phosphorus
S Constituent  ($100)  ;eay  yar, mean  var., mean  var.

F12,.13 5 R yooohy v &
Xy Barley 0.80 ii.6 0.4844 005 00001 035 0.0010
Xz ° Wheat 1.10 13.7 03003 007 0. 037 0.0009
X3 Corn 0.85 95 0.14444 0. O. 0.10 0.0001
Xa Soy 345 48.5 0.0588 033 0. 0.62 0.000s
Xs Mustard 2.00 319 49863 0. 0. 0. 0.
Xé » Dried milk 2.10 51.1 0.0653 127 00040 103 00021
X1 Fish soluble 3.00 65.5 21.0222 127 0.1404 169 0.0825
Xg Di-cal.phos. 0.80 0. 0. 2335 13631 1821 0.2073
Xo Limestone 045 0. 0. 3584 05138 0. 0.
X0 Molasses 072 0. 0. 081 0.0289 008 0.0004
X1 Dehy.aifaifa 1.80 218 02970 179 00097 031 0.0005
X1z Shrimp meal  3.00 469 9.2933 7.34 03893 1.59 00107
X1 Mono-sodium 0.60 0. 0. 0. 0. 2245 1.0206

The solution was obtained by SENSUMT.
The optimal solution is x*= (0.78718,0,0, 0, 0,0.172206, 0, 0, 0.0207, 0, 0, 0, 0.0199).
we find that a mixture of

x; = 0.7871 (barley)

x¢ = 0.1722 (dried milk)

Xg = 0.0207 (limestone)

X13 = 0.0199 (mono-sodium phosphate)

will satisfy the minimum requirements of ration for a cost of $101.26 per ton. But this ration will
satisfy the requirement only 50% of the time, because the protein, calcium, and phosphorus percentage
contents used were mean values.

All three nutritive requirement constraints have assocaited positive Lagrange Multipliers, and

therefore, these requirements are all binding constraints at the solution.
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Table (1-1b). Minimum content Required in the Feed

Type of hog % protein % Calcium % phosphorus
Starter 18 1.0 09
Grower 16 08 0.7
Finisher 14 07 06

3. Nonlinear Chance-Constrined Formulation

. The chance-constrained formulation of linear problem treats the nutritive requirement constraints

as follows: a
P[_El Ainiji]Za; (3'1)

’ =

Where

pl[.] : The probability operator, some or all of the coefficients A (i=1, 2, ...,1;j=1,2,
..., n) are random variables with normal distributions.

bi : Deterministic right-hand sides of constrints.

CH : Prescri_bed probabilities with which the constraints must be satisfied (i = 1, 2, ...., n)

" If the Aij"s in (3-1) are independent normally distributed random variables with mean _Kij’s and
variance Sfj’s, inequality (3-1) can be shown to be equivalent to
’2":1 A;j§j+¢(a;)f ‘il 52;;)(2 ]l/z_>_b (3‘2)
= )= )
Where, ®(a;) is the percentage point or fractile corresponding to (1 — g), and is obtained from the
inverse of the standardized normal left-tail cumulative function. For example, if the i-th probability
a=095 ¥(a) is the 0.05 fractile. A value of a; = 0.95 corresponds to a value of &(a;) = -1.645.
Inequality (3-2) is an appropriate relationship for the problem of this section. In a more general
setting, however the Aij’s can be dependent multivariate normal variables, in which case (3-1) can be
shown to be equivalent to

,-fﬁ, A +0Ca) (x'VxIV2 >p (3-3)

where Cvar(Ay) . - . . . .cov(Ag Ay |
v= . . (34)

L cov.(Ain Aﬂ) e v:;r( ain)‘ b
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Inequality (3-2) is a special case of (3-3), with the off-diagonal covariance terms in (3-4) equal to zero
in (3-2). Each of the stochastic constraints (3-1) must be considered in its nonlinear form (3-2). By
using the means and variances listed in Table 1-1 inequality (3-2), and assuming that the probability
of satisfying each of the requirements is at least 0.95, we obtain the following nonlinear model of the

least-cost hog ration problem.

13
Minimize f= X riX;
i=1

subject to

13 13
.Z_:‘§;X; +Q(ai) [ .2_1182 siXi ]llz >18

b
=]

3
ﬁix; +& (ai) E i; 62.,;)(; Jl/z >1
i=1}

13
Vix; +@ (a;) ( .z_;lazvixi 12209

-
"
-

where
5pU,V; © mean value of percentage content for protein, calcium, and phosphorus, respec-
tively.
variance of percentage content for protein, calcium, and phosphorus, respectively.
() :  -1.645 when minimum nutritive requirement probability is 95%.

The solution was obtained by SENSUMT.
A constrained local minimum for this problem is located at x* = (0261418, 0, 0, 0, 0, 0.29472, 0,
0,0.347896, 0, 0, 0.09596) at which {x*) = 1.042

Interpreting the optimum of the NLP we find that a hog ration mixture of

x = 0.2614 (barley)

x = 0.2497 (dried milk)

x = 0.3478 (limestone)

x = 0.0959 (mono-phosphate)

will satisfy the minimum requirements for 95% of all batches mixed. The cost per ton is $104.2, which
is an increase of approximately $3 over the linear program ration. But the $3 additional cost has
bought a 95% probability that the hog ration requirements will be satisfied as compared to a 50%
probability.
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4. Sensitivity Analysis
The sensitivity analysis is conducted with :respect to. the standard deviation, the normal density
abscissa value, cost of raw materials and the minimum percentages of protein, calcium and phosphorus.

The statement of the problem is as follow:

13
Minimize f(x, ¢)= ‘z_;l € X;
subject to

13 13 /
g1 (x, €)= ,§!§ixi+elo C -};'xe?x? V2> €35

13 13
g2 (x, €)= ,Zlﬁixi +€0 [ = €;%? 32> egs
i= i=1

Table (4-1) Listing of Parameters Involved in the Formulation of the Model

Standard deviation
% Protein % Calcium % Phosphorus

Barley €1 €11 €22
Wheat €2 €12 €23
Com €3 €13 €24
Soy €s €25
Mustard €5

Dried milk €6 €14 €26
Fish soluble € €15 €27
Di-cal. phos €16 €28
Limeston €17

Molasses €13 €30
Dehy .alfalfa €3 €19 €31
Shrimp meal €9 €20 €3,
Mono-sodium €33

-23-



Minimum content Normal density of Cost of raw

Required in the feed Abscissa value Materials

% Protein €35 % Protein €10 Barley €37
% Calcium €36 % Calcium €21 Dried milk €34
% Phosphorus €59 % Phosphorus €3 Limestone €39

Monosodium €4

13 _ 13
g2 (x. €) =Z uix; + €io E,EIE?X;’J‘/2 =gy
i= i=
S S e .2,.2 Y1/2
g3 (x, €)= X vx;+e€sn [ Zleixi JV2 > €3
i=1 i=

13
h (x, €)= .Z_le =

Here, the parameters in the sensitivity analysis are denoted €;. The listing and description of the
parameters involved in the formulation of the model are given in the Table (4-1), the problem data for
hog ration problem and the initial starting point for the SENSUMT program are shown in Table (1-1)
and (4-1). As indicated in thé table, the standard deviation, the normal densny abscissa value, cost
of raw materials and the minimum percentage of nutritients are treated as parameters in conductmg
the sensmv1ty analysns :

Table (4-2) gives the computer solution and the first partial derivative of the optimal value func-
tion f(x*) with respect to the parameter of standard deviations.

When considering the partial derivatives with respect to the standard deviation, as might be ex-
pected the input with a large standard deviation, the standard deviation of protein content in barley,
has the greatest effect on solution.

Table (4-2) Otpimal Value Function Derivatives with Respect to Standard Deviations

Dried Lime-
Barley milk stone Monosodium Others
Protein of/ d¢;  0.0041 0.007 0. 0. 0.
Calcium of/ d¢ 0. 0. 0. 0. 0.
Phosphorus  9f/de;  0.56-06 0.1505 0. 0.77-04 0.
Optimal mix 02614 0.2947 0.3479 0.0959 0.
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Thus, changes in parameter 1 can affect the cost of hog ration a significant amount and con-
sequently. The value of parameter 1, the standard deviation of the distribution of protein content
in barley, should be known with a high precision. This may be achieved by additional sampling and
testing of barly. '

Table (4-3), (4-5) gives the optimal mixture-in terms of starter, grower and finisher hog and the
first partial derivatives of the optimal value function f(x*) with respect to nutritive content require-
ment. ’ |

Changes in nutritive requirements do not change the mixture constitutents. The mixture con-
stituents are the same, although their mixture fractions have changed slightly. As expected, an de-
crease in minimum nutritive requirement causes an decreased cost of hog ration.

As a matter of interrst, the partial derivatives of the objective function with respect to minimum
nutritive requirement, the parameter 35, 36 and 29, are actually the Lagrange Muitipliers assocaited
with the three inequality constraints.

Table (4-3) Optimal Mixture and Solution

Opt. Mix Dried- Lime- Mono- f(x*)
hog type Barley milk stone sodium Others ($/ton)
Starter 0.2614 0.2947 03479 0.095. 0. $104.2
Grower 0.2804 - 0.2518 0.3709 0.089 0. $97.7

Finisher 0.2937 - 02102 04101 0.0858 0. $91.3

The values of the partial derivaiives in the sensitivity analysis are shown on Table (44). The:values
of the Lagrange Multipliers associated with the three inequality constraints which are estimated in the
SENSUMT output are;ul = 0.97503-02; u2 = 0.3220-08, u3 = 0.50469-02.

Table (4-4) -Optimal Value Function Derivatives with Respect to Minimum Nutritive Requirements

Type of hog | Derivatives Value _ ) Constrains value

constraint Starter - Grower Finisher Starter Grower Finisher
Protein 0.00975 0.00516 0.00273 0.39.05 0.72-05 0.1405
Calcium 0.32-08 0.29-08 02708 1 11.56 12.79 1395
Phosphorus 0.00505 0.08283 0.00766 0.74-.05 0.13-05 04905
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The values computed two different ways are in close agreement. Investigation of this mixture
reveals that the calcium constraint is not binding at the solution. The actual amount of calcium in the
mixture is approximately more than 10 times the amount required. If this is deemed to be too high
a content for proper growth regulation in pigs, an additional constraint can be added to the problem
giving an upper bound to the requirement. In fact, all requirements can be required to fill within
certain upper and lower bound. The requirements can also be forced to hold certain ratios to each
other within the mixture by the addition of appropriate equality constraints.

The value of Lagrange Multiplier of the requirement for protein is approximately 2 times larger
than the phosphorus, indicating that the price per ton of the total ration is more sensitive to the re-
quirement for protein than for phosphorus. But the magnitude of both multipliers show relative in-
senéitivity to both requirements for small changes. That is, if the requirement for protein was reduced
by one unit from 18 to 17, an approximate savings of $0.98 could be obtained on the price of the
mixture.

Table (4-5) gives optimal mixtures in accordance with the changes in parameters 10.21 and 34.
"The probability that the nutritive content constraint is satisfied. As expected, an increase in the pro-
bability causes an increase cost of the hog ration.

Table (4-5) Optimal Mixture in Accordance with the Nutritive Requirement Probability

Dried- Lime- Mono-
Barley milk stone sodium Others fx*)
Prob.
10360 0782 0472 00207 00199 0. $101.2
95% 02914 02947 03499 00959  O. $104.2
$=-1.645 |

An increase in parameter 10. 21 and 34, the probability that the protein, calcium and phosphorus
content is satisfied, actually makes the value of ® more negative due to the way it is coded here.

As we know, the 50% probability case is linear programming model. The cost per ton is $104.2,
which is an increase of approximately $5 over the linear programming ration. But the $3 additional
cost has bought a 95% probability that the ration requirements will be satisfied as compared to a
50% probability. The mixture constituents (of the nonlinear model, 95%) are the same (as the non-
linear model, 50%), althoﬂgh their mixture fractions have changed drastically.
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Table (4-6) Optimal Valve Function Derivatives with Respect to the Nutritive Requirement Pro-

bability
Nutritive Requirement Probability
50% 95%
Protein of/de -0.00549 -0.00248
Calcium offde -0.162-05 -0.57509
Phosphorus 0f/oe -0.0307 -0.00507

According to Table (4-6), optimal value function is sensitive to the phosphorus requirement

probability.

Table (4-7) also suggests that the otpimal solution value is very sensitive to the cost of raw

materials,

Table (4-7) Optimal Value Function Derivatives

Most sensitive

Most sensitive

Partial Derivatives Nutrients
Standard of Protein in
Deviation de€, 0.0041 Barley
Nutritive of 0.0098 .
Requirement 0€ 35 .009 Protein
Requirement of
Probability FYI 0.0051 Phosphorus
Cost of Raw of ) '
Material d€ 3 0.3479 Limestone

Table (4-7) results indicate that the optimal value function is sensitive to parameters 1, 35, 34,

and 39.
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5. Parametric Optimal Value Bounds Analysis

Consider the following right-hand side parametric programming problem of the chance-constrained
NLP model
3 . - 13
Minimize f (x) = 3 r;
i=1

subject to
1

(2]

13 /
Six; —1.645 [ X §%2,,x;%2 )'/2> €35
i=1

e
1

1

M
-

13 .
x; —1.645 ( T 52,82 JV2> e
i=1

13 13
o —1.645 C T8 uxi IV72 e
i=1

This problem has a linear objective function. Thus, f(x) can be concave and convex and the
nonlinear constraints can be shown to be concave. So the problem R(€) is convex and will be
designated by CR(€). It is well known that f*(€), the optimal value function of the problem CR(€),
is convex function of €. »

The convexity of the optimal value function f*(€) of the problem CR(€) enable us to calculate
parametric upper and lower bounds on this function when any of the problem parameters is radically
perturbed.

Computer solutions of the perturbed problems and bounds on the optimal value function for the
right-hand side parameter, the nutritive requirement are shown on Fig. 5-1.

The graphical depiction of the bounds derived for f*(€) as a function of parameter are shown
on Fig. 5-2. »

We will prove that the left-hand side of the nonlinear constraint

g(x)=a'x+®(x'Vx)"2

is a strictly concave function for all vectors we consider. If g(x) is strictly concave, then the following
relation should be true for any two vectors x! and x2,and 0 <A <1,
a'CAX' + (1-A) x? J+® ([ Ax'+ (1—-Adx2 ) 'V [Ax' + (1—=ADx? J)OV2)
ACa'x' 4@ (x*)'Vx' J2 )4 (1-A)(a'x> +&( (x2)'Vx? )2 )
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If we cancel the linear terms on both sides and divide by ®, (& <0), we obtain
CCAx +(1-AYx2 X'V CAx +(1=A)x? Y2 CAC (x1)'V x* )2

+C(1=A)((x2)'V x?)¥? )

After squaring, cancelling some terms and division by 2A(1-A) we have
(x2)'V x} GV x xD)!'V x? )2

Ifweput V=83, s! = Sx!, and s? = Sx?

then ((s2)s)) < (s*)s' (s?) s 2.

which is the Schwarz inequality for the case s’ # cs? with ¢ any constant. It is obvious that it is
possible to repeat the same sequence of relations in backward direction, so that f(x) is a strictly
concave function for any two vectors x! # ex2, ¢ being again any constant. Because the linear equa-
tion in the constraints prevents the existence of any two feasible vectors x* and x2, such that x! =
cx?, g(x) is strictly concave for all vectors satisfying the equality constraint.
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OPTNAL VALUE FUNCTION BOUNDS WHEN PAR(29) IS PERTURBED

POINT 1 (UNPERTURBED SOLUTION):

PAR(29) = 0.9000000D+00 F(PAR(29)) = 0.1025814D+01
POINT 2 (PERTURBED SOLUTION):
PAR(29)) = 0.4000000D+01 F(PAR(29) = 0.1050830D+01

LINE UNDER ESTIMATING F* AT POINT 1

F =0..5241818D-02 * PAR(29) + 0.1021096D+01

LINE UNDER ESTIMATING F* AT POINT 2

F = 0.8433453D-02 * PAR(29) + 0.1017096D+01

F* BOUND EVALUATION AT TEN EQUIDISTANCE POINTS BETWEEN POINTS 1 AND 2

PAR(29) LOWER BOUND UPPER BOUND
0.900 0.1025914D+01
1210 0.1027439D+C1
1520 0.1029915D+01
1.830 0.1032529D+C1
2.140 0.1035144D+C1
2450 0.1037758D+01
2.760 ’ 0.1040372D+01
2.070 0.1042987D+01
3.070 0.1042987D+01
3.380 0.1045601D+01
3.690 0.1048216D+01
4.000 0.1050830D+01

Fig. 5-1. Parametric lower bounds on f* (e5;)
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Fig. 5-2. Graph of bounds on f*(<;)

6. Conclusions

The results of sensitivity analysis gives us that the price per ton of optimal hog ration is not
sensitive to the standard deviation of nutritive content of raw materials. So we don’t need to conduct
more sampling to get sharper estimate.

We find out that only $3 additional cost per ton of hog ration has bought a 95% probability
that the hog ration requirements will be satisfied as compared to 50% probability.

The actual amount of calcium in the otpimal mixture of hog ration is more than 10 times the
amount required. If this is deemed to be too high, an additional constraint can be added to the
problem giving an upper bound to be required.

The price per ton of total ration is relative insensitive to the nutritive requirement.

It is shown that the right-hand side parametric programming of this hog ration problem is convex
and derived parametric upper and lower bounds on the optimal value function for the parameters of

the nutritive content requirement.
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