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Abstract

This paper presents a hardware accelerator for the maze routing problem. This accelera-
tor consists of three 3 stage pipelines. Banked memory is used to avoid memory read/write
conflicts and obtain maximum efficiency.

1. Introduction

Hardware accelerator for Lee’s maze routing algorithm have been studied earlier in [BLANS81],
[MUDG82], [MUDGS82], and [NAIR82]. A cellular mesh connected array of processors is proposed
in [BLAN81]. [IOSUS86] recently improved the modular architecture of the iterative array of pro-
cessors. [MUDGB82] proposes a pipeline of processors and a window scan algorithm. A mesh con-
nected microcomputer system is proposed in [NAIR82]. In this paper, we reexamine the problem of

developing a suitable hardware accelerator for Lee’s maze route.

2.. Lee’s Router

Despite its many short comings, Lee’s router and its iimprovement versions play an important

role in routing. Typically a Lee type router is used in the final stages of routing when other router

* Korea Military Academy
*#* University of Minnesota



have failed to complete the route. Lee’s router performs a breadth first search from one wire end
point (called the source) to the other (called the target). It not only guarantees to find a wire path
between source and target (whenever such a path exists), it guarantees to find a shortest such path.

Figure 2.1(a) shows a possible initial configuration. S and T denote the source and the target cells,
respectively. The hatched cells indicate cells with obstructions. Lee’s router finds a shortest path from
S to T by first labeling all cells one unit from S, then all that are 2 units from S are labeled, then those
that are 3 units from S are labeled, and so on. This labeling continues until the target cell T is reached.
Cells with obstructions are not labeled. This labeling phase is called frontwave expansion. Figure
2.1(b) shows the effect of the front wave expansion phase on the example of the Figure 2.1(a). We
use four lables: = , « , |, and 1. These point to the cell from which we reached the current cell.
Thus all cells adjacent to S have a label that points to S.
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If the front wave expansion reaches the target cell T, then the path recovery phase is entered. This
is a traceback from T to S and is done by simply following the arrow labels back from T to S (see
Figure 2.1(b)). Now the wire path has been identified. Before the next wire can be routed, this wire
path must be blocked and all arrow labels cleared from the grid. This is done in the sweeping phase.
This sweeping phase is similar to the front wave expansion phase. Figure 2.1(c) shows the configura-
tion after sweeping.

The complexity of Lee’s router is due to the front wave expansion and sweeping phases. Since
these are quite similar, we explicitly discuss the former only.

3. Strategies

The general approach for finding a suitable special purpose parallel architecture is to start with
finding the source of parallelism from the nature of the given algorithm. A very straightforward idea
is to have one processor for each grid cell and expand all cells of the front wave at the same time.
However, this requires an impractically large number of processors. Thus we have to find another way
to parallize the algorithm. There are three significant source of parallelism in Lee’s algorithm that
are directly applied to our parallel architecture.

[PARALLELISM 1]

In the front wave expansion phase of Lee’s algorithm, the four neighbor cells of each front wave
cell need to be examined. Examining each cell consists of the following steps; fetch cell information
from the memory first; some computational work is n_ecéssary to see if it is blocked, target or free cell;
finally the next front wave just generated, if any, is to be stored in the front wave queue. Thus, a
popular type of parallelism, called pipelining, can be used by simply assigning these functions separa-
tely into three stages as in the Figure 3.1. This gives a potential of 3X speed up over a single processor

implementation.

Memo Memo
i Computation v
Access Access

Figure 3.1  Pipelining



[PARALLELISM 2]

Observing that (up to) four neighbor cells of each front wave cell examined, it is desirable to
examine these in parallel. To do so, we must be able to handle four neighbor cells at the same time
with four different processors. Memory partitioning, as will be described later, is used to make parallel
memory fetching possible. This gives 4X speed up.

[PARALLELISM 3]

The concept of front waves gives the third source of parallelism. Front waves are maintained as
a set of cells which are the same distance from the source cell. Consider the grid plane masked with
chess shape as in Figure 3.2. Given any starting cell s which is colored white(black), all front waves of
distance 2i, i > 0 belong to the white(black) region and all front waves of distance 2i — 1, belong
to the bla.ck(white) region Since front waves are expanded by distance 1, and two consecutive front
waves are in different regions, we can separate the grid plane into two parts and two processors can be
built in such a way that processor A handles only white cells and Processor B handles only black cells
(see Figure 3.3). This has a potential of 2X speed up.
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Combining the above sources of parallelism together yields potential sources of speed up of up
to 32X. Section 4 exploits the first two sources of paralielism and the third source is considered in a
later section. Our primary design is comprised of three 3 stage pipelines and a banked memory. The
banked memory permits read/write to occur with no wait and no conflicts. Finally we discuss exten-
sions to global routing and to more complex cost functions.



4. Pipelined Architecture

4.1. System Overview

A very high level block diagram of our maze router is given in Figure 4.1. There are three signifi-
cant components in our system: Banked Queue Memory (BQM), Banked Cell Memory (BCM), and
Pipelined Processor (PP). The BCM is used to store the routing grid, the BQM stores cells that have to
be expanded in the front wave expansion phase, and the PP does the actual cell expansion. The BQM
operates as a FIFO queue. This queue is initialized to contain the unblocked neighbors of the cell S
(there may be up to 4 such cells). Each of these cells has their direction label set to point to S.
Following this initialization, the maze router of Figure 4.1 takes over and performs the front wave
expansion phase of Lee’s router. A cell is extracted from the BQM and fed to the PP (pipelined pro-
cessor). This box consists of three 3-stage pipelines (Figure 4.2).
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Memory pipe 3
Figure 4.1 Maze router Figure 4.2 Pipelined processors

The cell extracted from the BQM is broadcast to stage 1 of the three pipelines. Each pipeline is
assigned the task of examining one of the neighbors of the incoming cell. Note that an incoming cell
has only three neighbors to be examined (the fourth neighbor is on the path from S to the incoming
cell — it is the predecessor of this cell — and need not be examined). Each pipeline autonomously
determines which one of incoming cell’s neighbors it should examine and fetches it’s neighbor from the
BCM. Because of the way this memory is banked, it is possible to fetch all 3 neighbors in a single
cycle. - Neighbor fetching and some bookkeeping is done in stage 1 of each pipeline. Stage 2 deter-
mines where in the queue this neighbor is to be added. Note that in each cycle, up to three (and as
few as zero) neighbors may need to be added to the queue. In stage 3, the neighbors to be added to
the queue are properly labeled (i.e., labels point to their predecessor cell) and their addresses are

added to the queue. The queue is banked so as to allow up to three writes to occur simultaneously.
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Front wave expansion continues until either the target cell is reached or on four consecutive
cycles, no cell has been fed from the BQM to the PP. If the latter occurs, the BQM and PP are both
empty and there is no path from source to target.

4.2. Banked Cell Memory (BCM)

The BCM is used to store the routing grid. Each grid cell requires 5 bits of the BCM. At the top
level the BCM is partitioned into two blocks: BCMA and BCMB. BCMA consists of 3 bit cells while
BCMB consists of 2 bit cells. Each cell of the routing grid is represented by a 3 bit cell in BCMA and
a 2 bit cell in BCMB. BCMA cells are accessible only to stage 1 processors and BCMB cells to stage 3
processors. So, read/write performed by stage 1 processors do not conflict with read/write performed
by stage 3 processors. The usage of a cell in each of the banks BCMA and BCMB is described in Figure
4.3. The number inside a field is the number of bits used by that field.
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Figure 4.3 BCM cell

Each of the two banks BCMA and BCMB is itself composed of four banks of memory. Figure 4.4
shows an 8X8 grid mapped into 4 banks. With this banking scheme, no grid has two of its neighbors
in the same memory bank.

Consider a routing grid with 2, n > 1, columns. Assume that the rows and columns are numbered
beginning at 0. Cell (i, j) of the grid is represnted in bank j mod 4 if i mod 4 € {0,3} and in bank
(j+2) mod 4 if i mod 4 € {1,2}. Within a bank, cell (i) is in row i and column [j/4] .

It is more convenient to view each memory bank as one dimensional. This is done using the
standard row major interpretation of a two dimensional array. If the position in this one dimensional
memory are numbered from zero, grid cell (i,j) is represented in address i2n24 [i/4] of the appro-
priate bank. This formula needs to be used only to obtain the addresses of the source and target cells.
The bank and bank address of a cell adjacent to another is more easily obtained by using a table

lookup scheme. For this, we need to define the following for each grid cell (i,j):



PowParity = 0 if i is even
1 otherwise
ColumnParity = j mod 4

If we know the RowParity, ColumnParity, bank and address of a cell (ij) then these quantities
for its south, north, east, and west neighbors may be obtained using the table of Figure 4.5. Stage 1 of
each of the three pipelines in PP needs access to these tables. However, no two stage 1’s access the
same table simultaneously. So, there are no access conflicts.

4.3. Pipelined Processors (PP)

Each cell in the banked queue memory (BQM) has the configuration shown in Figure 4.6. The
numbers within a field give the number of bits needed for that field. The direction to the predecessor

cell is encoded as arrows.

Column Parity Bank
[ 1] e 2 l 2
Row Parity Direction Address in banked
to predecessor cell memory (BCM)

Figure 4.6 Cell description in Quene

There is a queue read processor associated with the BQM. On each cycle of the hardware router,
this processor attempts to extract the front element from the queue in the BQM. The detailed func-
tioning of this read processor is described later. If the queue remaines empty for four consecutive
cycles, the queue read processor terminates the search for a path from source to target. In this case,
there is no path from source to target. If the queue is not empty, then the front element is extracted
and broadcast to the stage 1 processors of each of the three pipelined processors. If the queue is
empty, then a special element ¢ is broadcast. The detailed working of each stage of the pipelined
processors is provided below.

4.3.1. Stagel

In each cycle, the stage 1 processor of the jth pipeline, executes the program fragment given in

Figure 4.7. If the Current Cell descriptor received is ¢, then the queue was empty and path expansion

to a neighbor cell cannot be done on this cycle. In this case, the next cell to expand to, Next Cell, is
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Figure 4.4 Memory partitioning ~_Figure 4.5 Neighbor address tables

set to ¢. If Current Cell < > ¢, then three neighbor cells are located in the directions (+<,~ { ,t ) —
<direction to predecessor cell>. The computation of line 4 enables each of the 3 stage 1 processor to
pick one of these three directions without consulting the other stage 1 processor. No two stage 1 pro-
cessor pick the same direction.

Each of stage 1 processor accesses one of the tables of Figure 4.5. Since no two have the same
value for dir, there is no table access conflict. Using the Row Parity, Column Parity and bank informa-
tion of the Current Cell, this information for the appropriate neighbor cell is obtained from the table.
Further, the address of the neighbor cell is readily computed using information from the table and the
address of the current cell. The address and bank of the neighbor cell is used in line 6 to access the
three bits (tag, hardblock, softblock) associated with the neighbor cell. After a softblock bit is read,
it is set to 1 (regardless of its initial value). This prevents a subsequent reexamination of the neighbor

cell.



1. Receive CurrentCell descriptor from quéue read processor;
2. if CurrentCell # ¢
3. then begin
4. dir :=(direction to predecessor +i) mode 4,
S. Use the CurrentCell descriptor and the table from Figure 4.3 for the direction dir to

obtain the descriptor for the neighbor cell in the direction dir;
6. Fetch the 3 bits for this neighbor cell from the banked memory BCMA and update

the softblock bit of this memory cell to 1;
7. If the hardblock bit is 1 or the softblock bit was already 1 before the update of line 6,

then NextCell = ¢
else NextCell = neighbor cell
endif
end
8. else NextCell = é;
9. Transmit NextCell descriptor, dirand direction to predecessor of CurrentCell to stage 2;
Figure 4.7 Stage 1 of /’th pipeline,i €123
1. Receiver NextCell descriptor, dir, and direction to predecessor of CurrentCell from
stage 1 processor;
2. if NextCell = target cell then terminate front wave expansion;
3. if NextCell # ¢ then flag(dir): =1;
4. Synchronize;
5. Use flagf ), dir, direction to predecessor of CurrentCell and the table of Figure 5.4
to obtain Priority and Num;
6. Positon : = Next + Priority; Bank: = Position mod 3;
7. 1if processor = 1 then Next: = Next + Num;
8. ﬂag(dir): =0,
9. Transmit Position, bank, dir, and NextCell descriptor to stage 3;
Figure 4.8 Stage 2

432 Stage2

The code executed by each of the stage 2 processors is given in Figure 4.8. After receiving the

information transmitted by the stage 1 processors, each stage 2 processor determines if its NextCell
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address bank corresponds to that of the target cell. If it does, then front wave expansion is terminated.
If none of the NextCell descriptors corresponds to the target cell, the stage 2 processors cooperate to
determine how many NextCells are not ¢. Let this number be Num. Clearly, 0 <Num < 3. To
determine the value of Num, each stage 2 processor sets a flag. There are four flags: flag(?), flag({),
flag(+), ﬂag(—>); At the start of each cycle, each flag is 0. In line 3, at most three of these ﬂags get
changed to 1. In line 4, the three stage 2 processors synchronize. Essentially, line 5 cannot be ex-
exuted until all flags have been appropriately set. The four flags form global data that is shared by
the processors.

Once the processors have synchronized in line 4, they perform a simultaneous read into the table
of Figure 4.9. This table is divided into 4 segments depending on the direction to the predecessor of
CurrentCell. Only the segment for the case when this direction is ¢ = south is shown. Each stage 2
processor needs to read the value of Num and Priority(dir) from the row corresponding to flag(t),
flag({), flag(«), flag(>). This can be accomplished by providing a three way fan out for the read or
by replicating this table.

tiag Priority N
Pre die | — |} —_ 1 ~ | e 1 ! Num
(1) 0 4] 1 - 2 0 0
0 [}] ] i 2 0 )
0 1 (1] 2 0 ! t
0 1 ! 2 ] ] 2
h 1 0 0]0 1 2 1
1 0 1|1 2 0 2
1 \ 0of{o0 1 2 2
1 1 111 2 0 3

w

Fig 4.9 Priority table for stage 2

As can be seen, Num is simply the number of flags that are 1. Priorities for front wave expansion
are assigned in such a way that the routed wires will have few jogs and will nest properly. These are
two attributes of good wire layout. Traditionally, one attempts to minimize jogs and get good routing
during the path recovery phase. This is accomplished by not making a jog unless necessary and when
a jog is necessary, it is made by assigning a predetermined priority order for the jogs. In our scheme,
we attempt to obtain good routes by monitoring the front wave expansion. Priority is given to con-

tinue expansion in the direction of the current wire path.

_]o_



Receive Position, Bank, dir, and NextCell descriptor;

if NextCell = ¢ then

begin

Let direction field of NextCell descriptor to dir @ 1 (i.e., complement bit O of . dir);
Write NextCell descriptor into position Position and bank Bank of BQM;

Set direction field of NextCell in BCMB to dir &® 1;

end;

Now A e N

Figure 4.10 Stage 3

In line 6, the position and bank of the BQM into which the NextCell descriptor is to be queued
is computed. Next gives the next available space in this memory. This is updated in line 7 by the stage
2 processor of pipeline 1 only. Hence, there are no write conflicts in line 6), then each stage 2 pro-
cessor can update its copy of Next. Line 8 resets flag to 0. '

433. Stage3

Figure 4.10 gives the program segment executed by each of the three stage 3 processors. This is
quite self explanatory. Note that by complementing bit O of dir (or taking the exclusive or, e, of dir
with 1), we get the code of the opposite direction of dir (north and south are opposites, east and west
are opposites). There are no memory access conflicts in lines 5 and 6 as each stage 3 processor accesses
a diferent memory bank. Also, note that line 4 and 5 can be executed in paralle! with line 6.

5. Banked Queue Memory (BQM)

The configuration of each cell of the queue memory is given in Figure 4.6. Since, in any cycle,
up to three cells may be written into this memory, this memory is partitioned into three banks: 0,
1 and 2. The partitioning scheme used is straightforward. Cell i is in bank i mod 3. In order to handle
and nXn grid, at most 4n queue memory cells are needed. However, one can make it do with a BQM
of a fixed size. For this, the BQM is partitioned into four buffers and each buffer is comprised of three
banks (cf. Figure 5.1). A disk is used as intermediate storage.

Assume that the four buffers of queue memory are numbered 1, 2, 3, and 4. The maze router
starts with a queue configuration which the unblocked neighbors of the source cell (there are up to
4 such neighbors) are in buffer 1. This is the initial read and write buffer (we assume that the buffer
capacity is =>>4). There are several variables associated with the queue buffers. These are
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RB . current read buffer

WB :  current write buffer

NB :  next buffer to read

NNB : buffer to read after next buffer

#Disk : number of buffer loads on Disk

Front : position in RB of front element of queue
Last : position in WB of Iast element of queue

huller oy er ufler
1 2 3 4 BQM

| | ,//

read write

Ilnnkl lbukz. Ibsnka

Figure 5.1 Banked Queue Configuration
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if WB is full (i.e., Buffer Size — Last < 3) then [
wait for buffer output (if any) to complete
if there was a buffer whose output has just completed then add this to the free list;
mutexbegin {mutually exclusive with line 11-17 of Figure 6.2}
case
(#disk > 0) or (# of free buffers = 1):
Initiate write of WB to disk;
#disk = #disk + 1;
WB = a buffer from free buffer list;
# of free buffers=2: {WB# RB}
WB = a buffer from free buffer list;
NNB=WB;
otherwise : {# of free buffers= 3, WB = RB}
WB = a buffer from free buffer list;
NB=WB;
endcase
mutexend;
Last = 0;)

Figure 5.2 Queue update following a write
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Initially, RB = WB = 1; NB = NNB = #Disk = 0; Front = 1 and Last is the number of unblocked
neighbors of the source cell, 1<Last <4. The buffers 2,3, and 4 are initially free. These are kept on
a list of free buffers. This list operates as a stack. Let Buffersize denote the number of cells a buffer
may hold. The current wirte buffer, WB, is said to be full when Buffersize — Last < 3. In other words,
a buffer that is not full can hold at least three additional cells. Hence, whenever the stage three pro-
cessors write into the BAM, they write into the same buffer. Following the writing of the new cells
into the current write buffer, WB, the code of Figure 5.2 is executed by stage 3 of processor 1. This
code updates the queue variables as needed.

In case the current write buffer has enough space to accomodate another stage 3 write, then the
queue variables néed no update. However, when this is not the case, lines 2-18 are executed. In line
2, we need to be sure that the last disk read/write operation has completed. In case this was a write
operation, a buffer just written out becomes free and is added to the list of free buffers. The rest of
the code (encoded in the mutexbegin and mutexend segment) is to be executed ina different time
slice from the code of lines 9-17 of the queue read procedure (Figure 5.3). This is necessary as both
codes read/change the same queue variables.

1. case
2. queue is empty:
3.  if queue has been empty fout times in a row
4, then terminate
5. _ else broadcast nil cell;
6. RB not empty:
7. broadcast Front cell from buffer RB;
8. Front: = Front + 1;
9. otherwise:
10. OldRB: = RB;
i1. mutexbegin
12. if NB # 0 then [RB=NB; NB=NNB; NNB=0]
13. else [wait for disk read to complete; RB = newly read buffer] ;
14, if #disk>0
15. then [initiate a read into buffer OldRB; # disk = # disk — 1]
16. else [put buffer OIdRB on free buffer list] ;
17. mutexend .
18. broadcast cell 1 from bufer RB;
19, Front = 2;
20. endcase;

Figure 5.3 Reading from the buffered queue
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The procedure to read from the queue is given in Figure 5.3. At the top level, the queue read
operation breaks down into three cases. If the queue has been empty for four consecutive cycles of
the hardware router, then the three pipeline stages are empty and there is no path to the target cell
and front wave expansion is terminated. Otherwise, cells are being processed in the pipeline and a
special nil cell ¢ is sent to the stage 1 processors. This cell has the property that all its neighbors are
blocked. Hence stages 2 and 3 essentially perform no work when processing these neighbors.

6. System Cycle Time

The system cycle time needs to be the largest of the following times:

1. Queue read time (Figure 5.3)

2. Stage 1 time (Figure 4.6)

3. Stage 2 time (Figure 4.7)

4. . Stage 3 time (Figure 4.9 + Figure 5.2)

Because of the mutually exclusive code segments in Figure 52 and 5.3, this maximum time could
be the sum of the times for these two segments. Note that the two mutually exclusive segments
interfere with each other only on those cycles in which both the current read buffer, RB, becomes
empty and the current write buffer, WB, becomes full. We can avoid the mutual exclusion by giving
priority to the write operation. In other words, if an attempt is made to execute both mutually ex-
clusive code segments in the same cycle, then the write succeeds while the read broadcast a nit cell.
The read succeeds on the next cycle.

In order to avoid delay caused by waiting for a disk I/O to complete, it is necessary to choose
the buffer size so that the time to fill a buffer is at least as much as the time input one bufer plus that
to output one buffer (note that the buffer fill time will generally be less than the buffer empty time).

Also, note that while our discussion of the buffered queue has been in terms of a random access
memory and a disk, it applies just as well to the case o expensive high speed RAMs for the buffers and
less expensive slow speed RAMs for the intermediate storage and also when the buffers are hardware
queues and the disk is replaced a RAM.

7. Path Recovery and Sweeping

If the target cell is reached, then path recovery is done by following the backward arrows from the
target cell to the source cell. The tag bit of all cells encountered on this path is set to 1. The seeeping

phase is similar to front wave expansion except that the roles of softblock = 1 and softblock = Q are
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interchanged. As a result all softblock bits are reset to 0. Further, cells with tag = 1 that are encoun-
tered during this sweeping have their tag bit reset to 0 and their hardblock bit set to 1.

8. Performance

We expect our hardware router to provide a significant performance improvement over a con-
ventional implementation of Lee’s algorithm on a uniprocessor computer. This is because very little
overhead has been introduced in the hardware implementatiori. Both the hardware router and the
uniprocessor implementation of Lee’s algorithm perform essentially the same computations (remove
a cell from the queue, examine its neighbor, add unblocked neighbors to the queue). We can compare
the performance of our system to that of the architectures proposed in [BLAM81}, [IOSU86],
[NAIR82], and [MUDGS82]. The detailed evaluation of their performances is omitted in this apper
due to the space limit. However, we can readily see the effectiveness of our system over others in

terms of processor utilization.
9. Extensions
As mentioned at the beginning of this chapter, there are three possible sources of paralielism.
When the third parallelism is accounted for, the system block diagram takes the form given in Figure

9.1. There are two identical parts in the system each of which is exactly the same as the one described
at Section 4. The left half of the system (Pipeline A) is for expanding the white region and the right

Pipelined Pipelined
Processors Processors
1 . 2

Banked Banked
celt Cell
Memory 1 Memory 2
Memory
nartitioning
Cell
Memory

Figure 9.1 Block diagram
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half (Pipeline B) is for the black region. The corresponding memory partitioning for Figure 9.1 is given
in Figure 9.2. There are eight banks of memory; four of them are assigned to Pipeline A and the other
four banks are assigned to Pipeline B.

The other extension is to allow complicated cost functions (not unit distance cost function). This
is very useful since in practice paths other than the shortest may be more desirable (e.g., the path with
less jogs may be preferred to a shorter path with many jogs). In this case, we need 4 pipelines instead
of 3 because certain cells can be expanded more than twice and we have to check all four neighbors
even though some of then are known to be expanded already. Basically the global routing has the same
nature -as the detailed routing with complicated cost functions. Also the muti layer problem can be
implemented simply by adding two more pipelines; one is for going up and the other is for going down

(i.e., there are 6 pipelines).
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D
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Figure 9.2 Memory partitioning
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10. Conclusions

We have designed a hardware accelerator for the maze routing problem that provides good hard-
ware utilization and good speed up. It can be used to perform grid routing on grids that fit into the
available memory. Unlike other proposed hardware solutions for this problem, our design does not
require an increase in the number of processors as the problem size increases. Also, our design many
be extended to handle mutilayer routing by increasing the number of pipelined processors and by
extending the memory partitioning scheme.
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