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Abstract

In this paper, an integrated production inventory model is devéloped for two products on a single
facility in which the raw materials are fed to the production system as required at the facility. The aim
is to determine simultaneously the optimal production schedule for two products and the optimal
procurement policies for the raw materials in a way that minimizes the total variable cost of the produc-
tion system. The production schedule for the more frequently set-up product is formulated by the.
method of equal or unequal lot sizes,

For the model developed, we present a computational scheme of finding the optimal policies and
carry out sensitivity anatysis through example problem.

1. Introduction

Many research works [1,2,4,6,7] were undertaken to solve the problem of scheduling lot sizes for
several products on a single production facility, called by the “Economic Lot Scheduling Problem
(ELSP). ‘The ESLP arises from the desire to accomodate the cyclical production patterns that are based
on economic production quanitity (EPQ) calculations for individual products on a single facility. An

excellent analysis of these methods can be found in survey paper by Eimaghraby [2]. These works
proposed methods tor generating feasible schedule with lower cost than the one obtained assuming a

common cycle length. However, all these models do not take into account particular consumption
pattern of raw materials in batch production, i.e., assume implicitly that the raw materials required for
the products are procured in the optimal manner. In practice, the raw materials required cannot be
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determined without knowing the production lot sizes of the products. Hence we know easily the fact
that the problem of determining the lot sizes of the products cannot be treated independently of the
problem of the procurement policies for the raw materials.

In this regard, Goyal [3] derived an integrated production inventory policy for the case of a single
product produced on a single facility. The model simultaneously determines the economic batch size
for the product and economic order quantities for raw materials, that will minimize the total variable
cost of the production system. As indicated in Korgaonker [5], Goyal’s solution takes into account the
fact that raw materials are consumed only during the production time of the batch, and rot uniformly
as commonly assumed. This fact is more important in a case where multiple products are produced on a
single (ot multiple) facility production system on a batch basis. Korgaonker [5] also studied integrated
production inventory model for multiproduct mutltifacility production system in which instantaneous
production is allowed in each facility. This assumption is quite restrictive in practice.

In this paper, an integrated production inventory model is developed for two products on a single
facility in which the raw materials are fed to the production system as requited at the facility. The
objective is to determine simultaneously the optimal production schedule for the products and the
corresponding optimal procurement policies for raw materials in a way that minimizes the total variable
cost of the production system, The production schedule for the more frequently set-up product is
constructed by the method of equal or unequal lot sizes. This method is possible to obtain lower cost
solutions,

2. The Mathematical Madel

The mathematical model presented is based on the following assumptions:

1. There is only one facility for producing two products, where only one product can be made at any
given time,

2. Raw materials are fed to the production system as required at the facility.

The raw materials are procured from outside sources and their replenishment rates are assumed to

be infinite.

The demand rates and production rates for each product are known and constant.

Procurement lead-time for the materials is zero, and planning horizon is infinite,

Shortage of raw materials or the products is not permitted,

All the other cost factors pertaining to set up, inventory holding order processing are assumed

known with certainty.

The following notations are used throughout this paper:

the i-th product (i=1, 2),

T  basic period

V  integer number of basic period in common cycle{VT)

P; production rate per year, assumed constant

d; demand rate per year, assumed constant (p; > d;)

p; intensity of demand ( = dj/p;)

T; production cycle time

t; production time ( = p;T;)

H; inventory holding cost per unit per year

S; manufacturing set-up cost.
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Fot the j-th taw materials (j=1,2 . .. n),

number of raw materials required for the product

a positive integer such that the raw material is ordered once every WjVT cycle
stock holding cost per unit per year

cost of placing a procurement

the number of units in material during a cycle (W V1)

my; amount of raw material required to make one umt of the producti(i=1 2)
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For the cost function, _
Rj [T,V.Wj] annual variable cost for the j-th raw material

R[T,V] total minimum variable cost for all the raw materals
J[TV] annual variable cost for the products
F[T.V] total variable cost per year (=J{T,V] + R[T,V]).

Under the above assumptions and notations, the average cost per year when product iis produced in
cycle of length Tj is given by

(Ty) = Sy/Tj + (1/2)H;d(1-ppT; E 1)
If each product is treated independently, then the optimal cycle length T;* isgiven by
= [28/ {Hdy(1 - ot ] /2 @)
corresponding to the minimum cost
CiH(T*) = [2Sigd; (1-pp) 2. | e

However, it is not possible to produce each product according to its optimal frequency because of
facility interference. It is well known that the sum of independent optimal costs, ZCy, is a lower bound
on the optimal value of any feasible solution. Consequently, there arises the need to search for a feasible
least cost solution.

To obtain feasible schedule for the case of two products, we define the product having smaller cycle
of Tj as our first product. That is, let the products be numbered such that Ty < T,. In particular, we
will deal dizectly with the integer number of a basic period (T) as appeared in the previous medels [2].
Let V be a positive integer such that Ty = Tand T; = VT. Then

T, = VT, ' 4)
implies that the first product is produced V times, while the second product is made only once in a total

cycle time (VT), If (4) is violated, it is clear that there will be times when both products will srmul
taneously require time on the facility. The scheme of lot sizes is shown in Figure 1.

._33__



case 1. T,=VT, (V=2
~ IA"\
4 ™. 4 -
.
// —_ ! o~
~ Fi =
~ T
[ {{ -~ Y !f -
a4 ~ ~
T . T, ; :
I ] [ '
: ! T, F
L 1
————==- product 2
product 1

Figure 1. Equal lot size scheme (case 1) and facility interference (case 2)

For schedule feasibility, it is necessary that
V=X (5)

where X =(1 - p;}/ps. Note that (5) is derived by t; +t; =p, T + p, VT < T. We know that conditions
(4) and (5) are necessary and sufficient condition for the feasibility of the schedule,

Now, to obtain the optimal policies, we will consider two kinds of cost function in case of the
infeasibility (V > X) as well as feasibility (V = X} condition, Note that when V < X, the production
schedule can be generated as the equal lot sizes (Condition 1) for the more frequently manufactured
product, and when V 2> X, the production schedule can be modified as the unequal lot sizes (Condition
2).
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Figure 2. Inventory levels of products and material j in the case of equal lot size (V=3, Wj=2): 4, =
(1-p2); VT, 8, =(1-p1)dy T, 25 = (my3d, + mzjdz)WjVT, 24 = (myjd; + myd, JVT.
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2.1. Condition 1

The production system is characterized by undertaking setups at equal time intervals, The one
feasible schedule for the equal lot sizes is shown in the Figure 2.

The annual variable cost of the two products from manufacturing set-up and inventory holding is

J[TV]

S /T+(1/2)H,dy(1 - p))T + S /VT +(1/2)Hydy (1 - 02 VT
(81 + 8, /VY/T +(1/2){Hyd, (1 - p1} + Hydy(1 -, JVIT. (6)

For raw material j, the number of units in inventory during a cycie (WjVT) is
l} = (IIQ)WJVTZ { dl mlj(pl + VWj - I) + dzmzj(zpl + VW] + ,OgV-V) }. (7)

Then the annual variable cost for the jth raw material Rj[T,V,Wj] from procurement arid stock
holding becomes

Ri[T.V.Wi] = {sj+hIj}/W;VT. (8)

With the given T and V, the corresponding optimal value of Wj = Wj(T. V), defined implicitly, which
minimizes R][] is found by

R{T.VW(T.V)] < min{Rj[T.VW(T.V)+1], RIT.V.W(T.V)-1]}. (9)

As described in Goyal [3], we assume that R_| [T, V,Wj] can be treated as a continuous function of
Wj. By differentiating partially with respect to Wj, we obtain

Wj* = ijVT (10)
were Gj =[2s]-,|'4 hj(dl myj + d, mzj)}] 1‘(2. Notice that Wj(T, V) can be obtained by evaluating and com-
paring the annual variable cost for the two integer values Wj nearest to Wj"‘. This method will be restated
in Section 3.

The total minimum variable cost for all the raw materials is given by

RIT.V]

il

Ri[T.V.W(T.V)]
§ +h]-Ij}/4Wj(T.V)VT}. (1)

4

I

37 4

=1

Hence the average annual total variable cost F[T, V] for the system is given by
F[T,V] = IJ[T.V] + R[T,V]. (12)

Differentiating F[T, V] with 1espect to T and V respectively and equating the first derivative equal to
ZEro, we get
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T = 2S4S,V + X gVW(T. V) /A2 £ 1) (13)
and V= (T[S, + 5 5W iA,112 2 v(n) (14)
where
Ay = Hyd(1-py)+Hydy(1-p)V
+ Ehifdemyjipn + VWITV) -1} + dymag 29, + VW(T, V) + 5,V - V1]
and

A; = Hydy(1-p5) + Ehj[dlmljwj(T'V) + dzmzj{wj(T,V)"'.Oz -14H].

Note that the value of V* obtained above may not be integer because of the underlying continuity
assumption. V¥ in (14) can be modified as Wj in (10). In case of a single product, i.c., dy = §, = 0,
V=1and m, i= 0 for all j, the results obtained are the same as those found by Goyal [3].

22. Condition 2

When the set-up frequency for the first product, V, does not satisfy the condition {5), we know
easily the fact that the first product cannot be produced by using the equal time intervals. As in Goyal
{4]. we will adopt the conception of unequal lot sizes. That is, for the first product one set-up covers
a time interval of VT/X and remaining (V-1) set-ups cover a time interval of VT(X-1)/X with equal time
intervals. The production system characterized by the unequal lot sizes is represented in the Figure 3.
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Figure 3. Inventory levels of products and material j in the case of unequal lot size (V = 3, Wj=2):
a; =(1-p)d, VT, 8, =(1 - py ), VI/X, 23 = (1 - p J1 (X - DVI/X(V - 1), 24 = (my3d,
+ mzjdg)w]VT, dg = (ijdl + mzjdg)VT, g ={1 + (X - 1) ;" (V - l)} VT;{X



Following procedures similar to those in Condition 1, the annual variable cost of the two products
becomes

JITVY = (81 +So/VIT+(1/2) [Hyd;(1-p1) {1 +(X- 1AV -1 /X
+H,dy(1 - p2)} VT (15)

and for raw material j,

L= (UDWVPT? [(dimyy/X?) {pa(1 +(X- 1PV -1D)
+2(X- 1)+ (V-2) (X107 [ (V-1) + (W - DX}
+dymgji(oy + X +(Wy- 1) (16)

As in Condition 1, the optimal values are given by

T = 208 +S,VE S VWL VIBYE 2 TV (17)

=1

and V= (UD 218+ X 5WiH/B112 2 v(T) (18)

where
B, = H;d,(V/X®)(1-py) {1+(X-1)? [(V-1)} +Hd V(1 -p2)

+ 3 nVI@am/XA) o1+ (X 1PV 1)+ 20X 1)
+(V-2)(X- D)/ (V-1)+ XEW(T, V) - 1)
#damaj {0y + 1)/ X+ W(T.V)-1}]

and
B, = Hydy(l-p3) {1-(X-1)2/ (V-1 /X2 +Hydy(1 - p)

+ 3 ldymyg/X) foy (1 - (K- 1P/ (V- 1)+ 2X-1)
+(X 1P +INV -1)2)+X2(Wj(T,V)- 1)}
+damyi{(py +1)/ X+ W(T.V)-DH].

3. Solution method

As seen in (9), (13) and (14), we can derive the implicit solution for T, V and W;. In these formulae,
the values of V and Wj are positive integer. However, since the value of V* and Wj* obtained above may
not be integer, we examine below the question of integrality of V* and Wj*.

Since W, is related by Rj[.] in (8), we assume that R]-{Wj] be the function of Wj. Let Wj be the
largest integer less than or equal to Wj* in (10). We wish to derive conditions for rounding oft Wj* to
either W; or W: + 1, so that we can write Wj* = Wj ¢ (o< & < 1). Then we also know easily that Wj*
is rounded off to W; if R;[W;] <Rj[W;+ 1} That s,



AR

W; if R[Wj] < Ry[W +1]

Wi+l iij[Wj] > Rj[Wj+1] (19)
ijwjﬂ iij{Wj] = RJDV]+1]

The integrality of V* can be treated in an identical manner.

Ve o=

\% if F{V] < F[V +1]
V4l if F[V] > F[V+1] (20)
VorV+1 ifF[V] = F[V+1].

Now, the steps of the computational scheme are proposed below,

Stage A: <For Cordition I : Equal Lot Sizes>

Step Al,

Step A2,
Step A3.
Step Ad,
Step AS.
Step A6.

(Initialization) For all j, set Wj =1,

Set V=1.

Find T* in (13).

Compute V* by (14) and round off V*,

For all j, compute Wj* by (10) and round off Wj*.
Repeat Step A2-A4 until convergence is obtained.
Go to Stage B.

Stage B: <Checking of feasible schedule>

Step BI1.
Step B2.

Step B3.
Step B4.
Step BS.
Step B6.

If'V < X, then Stop (feasible solution).

Otherwise, go to Step B2.

(Initialization) Set V = [X], where [.] = Gauss value.
For all j, Set W; = 1.

Find T* from (13).

For all j, compute W;* by (10) and round off Wi*.
Repeat Step B3-B4 until convergence is obtained.
Compute F[T, V] from (12). Set TC1 = F[T, v].

Stage C: <For Condition 2 : Unequal Lot Sizes>

Step C1.

Step C2.
Step C3.
Step C4.
Step C5,
Step. C6.

(Initialization) For all j, set Wj =1.

SetV=([X] +1.

Find T* from (17).

Compute V* by (18) and round off V*,

For all j, compute Wj* by (10) and round off Wj*.

Repeat Step C2-C4 until convergence is obtained.

Compute F[T, V]. Set TC2 = F[T, V].

If TC1 > TC2, then the solution becomes unequal lot sizes. Otherwise, the solution

become equal lot sizes in Stage B.

4, Numerical Example

To illustrate the computational scheme developed, a numerical example is considered. This proce-
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dure is coded in Basic and run on an IBM-AT personal computer. The input data used for this example
is shown in Table 1. In this example, we assume that the raw materials (1,2,3) can be used to make
product 1, and the product 2 can be manufactured within the raw materials (2,3.,4).

Table 1. Input dasa for the example

product i P d; 5 H;j
1 200,000 100,000 27,000 20
2 180,000 60,000 42000 8

material j my m, S h]
1 i 0 13,000 0.6
2 4 6 9000 01
3 5 3 8,000 0.2
4 0 2 14,500 0.3

The values of V’s and Wy’s obtained at different iterations are given in Table 2. In applying the Stage
A, we first set all W and V equal to unity, and determine production cycle time T* = 0.38097 years.
Using this value, V* is recomputed. Next, al} Wj* are recomputed. Substitution of the latter into expres-
sion for T*, yields new value of T*, i.e., T* = 0.25744 years. The values of V* and Wj* converge at third
jteration. Then the optimal values are given by T* = 0.24655 year, V¥ = 2, (W Wo W3 Wy )* = (1.1.1.2).
But, since V* > X(= 1.5), we can check easily that the production schdule is not feasible. Therefore we
must consider the next stages. Following stages similar to those in Stage A.

It can be seen from the results that the minimum cost occurs in Stage B when T* = 0.32369 year,
V* = 1, (W, Wy, W3, Wye)* = (2.2.1.3). The corresponding optimal total variable cost is $146784 per
year.

Table 2. Results of computational scheme

Stage A:

fteration v W 1 Wg W3 W4 T
0 1 I 1 1 i 0.38097
1 P2 1 1 1 1 0.25744
2 2 1 1 1 2 0.24655
3 2 1 1 1 2 0.24655%

The cotresponding total cost = $143590 per year.
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Stage B:

Iteration v Wl Wtz W3 W4 T
D 1 1 1 1 l 0.38097
1 1 2 | 1 2 0.34667
2 1 2 1 2 3 0.33879
3 1 2 2 1 3 032369
4 1 2 2 1 3 0.32369*

The corresponding total cost = $146784 per year**,

Stage C:

Tteration v W, W, W, W, T i
0 2 1 1 1 l 024956
1 2 1 1 1 2 0.23924
2 2 1 1 1 2 0.23924*

The corresponding total cost = $146858 per year.

Note: * =convergence, ** = minimum cost.

5. Conclusion

An integrated production inventory model has been developed in case of two ptoducts on a single
facility. The model simultaneously determined the optimal production schedule for the products and the
corresponding optimal procurement policies for the raw materials. In particular, production schedule
was generated by the equal or unequal lot sizes.

In addition, a computational procedure was developed for finding the optimal solution. To illustrate
the procedure, a simple example was solved.

More work could be done to extend the result of this paper. For example, multiproduct situation
and decaying raw materials could be considered. In a subsequent paper, we intend to study the model
of grouping the raw materials. This problem becomes desirable for multiple raw material inventory
management due to several factors such as savings on order placing costs, better implementation of order
control, and the availability of group discounts.
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