Kyungpook Math. J. Volume 26, Number 1 June, 1986

CHARACTERIZATIONS OF SQ-CLOSED SPACES

By Travis Thompson

1. Introduction

A topological space is said to be SQ-closed if its continuous image in any Hausdorff space is sequentially closed [4]. Characterizations of SQ-closed spaces are obtained together with known characterizations presented in [3]. All topological spaces in this paper are assumed to be Hausdorff. Following the notation of [2], let S denote a class of first countable topological spaces containing the class of first countable Hausdorff completely normal and fully normal spaces. The one-point compactification of the positive integers N with discrete topology will be denoted by \overline{N} . The notation T(n) will be used to denote the set $\{k | k \ge n, n \in N\}$.

2. Preliminaries

The following definition and theorems are given for future reference.

DEFINITION 2.1. The sequence $\{x_n\}$ r-converges (accumulates) to a point $x \in X$ if for each $V \in N(x)$, $\{x_n\}$ is eventually (frequently) in \overline{V} . [1]

DEFINITION 2.2. A function $f: X \to Y$ is weakly continuous at each point $x \in X$ if for every open $V \in N(f(x))$, there exists a $U \in N(x)$ such that $f(U) \subset \overline{V}$. [3]

DEFINITION 2.3. The graph of a function $f: X \to Y$, denoted G(f), is strongly closed if for $f(x) \neq y$, there exist open sets U and V containing x and y, respectively, such that $f(U) \cap \overline{V} = \phi$. [1]

THEOREM 2.4. A topological space X is SQ-closed if and only if every sequence in X has an r-accumulation point. [4, Th. 4.1]

THEOREM 2.5. For a function $f: X \rightarrow Y$, the following are equivalent:

1) f is weakly continuous;

2) if $\{x_{\alpha}\} \rightarrow x$, then $\{f(x_{\alpha})\}$ r-converges to f(x); [1, Th. 6]

3) for every open set V in Y, $f^{-1}(V) \subset [f^{-1}(V)]^0$. [3]

3. Main Results

THEOREM 3.1. If Y is SQ-closed and $f: X \rightarrow Y$ has a strongly closed graph, then $\{x_{\alpha}\} \rightarrow x$ implies the net $\{f(x_{\alpha})\}$ r-accumulates to f(x).

PROOF. Let $\{x_{\alpha}\} \to x$. Then since Y is SQ-closed we have that $\{f(x_{\alpha})\}$ r-accumulates to some point $y \in Y$. Suppose that $f(x) \neq y$. Then, since G(f) is strongly closed, there exist open sets U and V containing x and y, respectively, such that $f(U) \cap \overline{V} = \phi$. Because $\{x_{\alpha}\}$ is eventually in U, we have that $\{f(x_{\alpha})\}$ is eventually in f(U). But $\{f(x_{\alpha})\}$ having y as an r-accumulation point implies that $\{f(x_{\alpha})\}$ is frequently in \overline{V} , contradicting the fact that $f(U) \cap \overline{V} = \phi$. Therefore, we must have f(x) = y.

THEOREM 3.2. Let $f: X \rightarrow Y$ be any function where Y is SQ-closed and X is first countable. If G(f) is strongly closed, then f is weakly continuous.

PROOF. Suppose there exists an open V in Y such that $f^{-1}(V) \subset [f^{-1}(\overline{V})]^0$. This implies there exists an $x \in f^{-1}(V)$ such that $x \in X - [f^{-1}(\overline{V})]^0 = \overline{X - f^{-1}(\overline{V})}$. There now exists a sequence $\{x_n\}$ in $X - f^{-1}(\overline{V})$ such that $x_n \to x$. By Theorem 3.1, $\{f(x_n)\}$ must have non-empty intersection with \overline{V} since $V \in N(f(x))$. This contradiction establishes the fact that f is weakly continuous.

THEOREM 3.3. If for every topological space $X \in S$ each mapping of X into Y with strongly closed graph is weakly continuous, then Y is SQ-closed.

PROOF. Suppose Y is not SQ-closed. Then there exists a sequence $\{y_n\}$ in Y that has no r-accumulation point. Let $X=N\cup\{\infty\}=\overline{N}$. The space \overline{N} is fully normal and completely normal and thus belongs to S. Selecting $b \in Y$ we define a function $f: X \to Y$ by $f(n)=y_n$, and $f(\infty)=b$. We now show that G(f) is strongly closed.

Case 1: Suppose $f(n) \neq y$. Then since Y is Hausdorff, there exists $V \in N(y)$ such that $f(n) \in \overline{V}$. Therefore, $f(\{n\}) \times \overline{V} = \phi$.

Case 2: Suppose $f(\infty) \neq y$. Then since $\{y_n\}$ does not *r*-accumulate to *y*, there exists $V \in N(y)$, $b \in \overline{V}$, such that $T\{y_n\} = f(T(n))$ is eventually outside of \overline{V} . Since $[T(n) \cup \{\infty\}] \in N(\infty)$, we have $f[T(n) \cup \{\infty\}] \cap \overline{V} = \phi$ for sufficiently large *n*. In any case, we have that G(f) is strongly closed.

Additionally, we can see that f is not weakly continuous. In particular, consider the sequence $\{x_n\}$, where $x_n = n$. Obviously, we have $x_n \to \infty$, but since

82

 $\{f(x_n)\} = \{f(n)\} = \{y_n\}$ has no *r*-accumulation point, it cannot *r*-converge. Appealing to Theorem 2.5 (2), the theorem follows from contraposition.

COROLLARY 3.4. A Hausdorff space Y is SQ-closed if and only if for every topological space X which belongs to S, each mapping of X into Y with strongly closed graph is weakly continuous.

COROLLARY 3.5. For a topological Hausdorff space Y, the following are equivalent:

1) Y is SQ-closed;

2) For every first countable topological space X, each mapping of X into Y with strongly closed graph is weakly continuous;

3) Each mapping of \overline{N} into Y with strongly closed graph is weakly continuous.

Harding University Searcy, AR 72143 U. S. A.

REFERENCES

- Herrington, L. L. and Long, Paul E., Characterizations of H-closed spaces, Proc. Amer. Math. Soc., Vol. 48, No. 2 (1975), 469-475.
- [2] Kasahara, Shouro, Characterizations of compactness and countable compactness, Proc. Japan Acad. 49(1973), 523-524.
- [3] Levine, N., A decomposition of continuity in topological spaces, Amer. Math. Monthly 68(1961), 44-46. MR#A3548.
- [4] Thompson, Travis, SQ-closed spaces, Math. Japonica 22, No.4 (1977), 491-495.