ON THE SEPARATION AXIOM R_T

By Maria-Dolors Arnal and Josep Guia

1. Introduction

The axiom weaker than R_0 introduced by J. Tong (1983) has suggested us the definition of a family of new axioms in the way of the work of J. Guia (1984).

DEFINITION 1.1. In a topological space (X, \mathcal{I}) , let x be a point of X. The closure of x is the set $\{\bar{x}\} = \bigcap \{F | x \in F, F \text{ closed}\}\$; the kernel of x, $\{\hat{x}\} = \bigcap \{O | x \in O, O \in \mathcal{I}\}\$; the covering of x, $\langle x \rangle = \{\bar{x}\} \cap \{\hat{x}\}\$; the derived set of x, $d\{x\} = \{\bar{x}\} - \{x\}$; the essential derived set of x, $D\{x\} = \{\bar{x}\} - \langle x \rangle$; the shell of x, $s\{x\} = \{\hat{x}\} - \langle x \rangle$.

DEFINITION 1.2. In a topological space (X, \mathcal{I}) , a subset A of X is said to be essential degenerate if it is contained in $\langle x \rangle$ for some $x \in X$.

PROPOSITION 1.3. [1] A topological space (X, \mathcal{T}) is a T_1 -space iff one of the following conditions holds:

- 1) $\forall x \in X$, $\{\bar{x}\} = \{x\}$ (2.4.) unique la right A (3.4.) A (3.4.) A (3.5.) A (4.5.) A (4.5.)
- 2) $\forall x \in X$, $d\{x\} = \phi$
- 3) $\forall x \in X, \{\hat{x}\} = \{x\}$
- 4) $\forall x \in X$, $s\{x\} = \phi$
- 5) $\forall x, y \in X, x \neq y \text{ implies } \{\bar{x}\} \cap \{\bar{y}\} = \phi$
- 6) $\forall x, y \in X, x \neq y \text{ implies } \{\hat{x}\} \cap \{\hat{y}\} = \phi$

PROPOSITION 1.4. A topological space (X, \mathcal{I}) is a R_0 -space iff one of the following conditions holds:

- 1) $\forall x \in X$, $\{\bar{x}\} = \langle x \rangle$
- 2) $\forall x \in X$, $D\{x\} = \phi$

Mathematics subject classifications (1980): Primary 54D10; Secondary 54B15,

Key words and phrases: Essential derived operator, essential shell operator, separation axioms, T_0 -identification spaces.

- 3) $\forall x \in X$, $\{\hat{x}\} = \langle x \rangle$
- 4) $\forall x \in X$, $S\{x\} = \phi$
- 5) $\forall x, y \in X$, $\langle x \rangle \neq \langle y \rangle$ implies $\{\bar{x}\} \cap \{\bar{y}\} = \phi$
- 6) $\forall x, y \in X$, $\langle x \rangle \neq \langle y \rangle$ implies $\{\hat{x}\} \cap \langle \hat{y} \rangle = \phi$

PROOF.

It is immediate. See (1.1) and [2], [3], [4], [5].

DEFINITION 1.5. A topological space (X, \mathcal{I}) is a R'_T -space if, for every $x \in X$, D(x) and S(x) are degenerate.

REMARK 1.6. R'_T axiom has been introduced by J. Tong [10] as R_T axiom. We will see that our notation is better suited for the purpose since R'_T is stronger than the correspondent ET_T (see [6]) whereas R_α -axioms are weaker than ET_α -axioms (see [6] and [8])

PROPOSITION 1.7. [1] [7] A topological space (X, \mathcal{I}) is a T_{YS} -space iff one of the following conditions holds:

- 1) $\forall x, y \in X, x \neq y \text{ implies } \{\bar{x}\} \cap \{\bar{y}\} \text{ is either } \phi \text{ or } \{x\} \text{ or } \{y\}.$
- 2) $\forall x, y \in X, x \neq y \text{ implies } \langle x \rangle \neq \langle y \rangle \text{ and } d\{x\} \cap d\{y\} = \phi.$

DEFINITION 1.8. [6] A topological space (X, \mathcal{T}) is a R^*_{YS} -space if, for arbitrary $x, y \in X$, $x \neq y$ implies $D\{x\} \cap D\{y\} = \phi$.

PROPOSITION 1.9. [8] [6] A topological space (X, \mathcal{I}) is a R'_{YS} -space iff one of the following conditions holds:

- 1) $\forall x, y \in X$, $\langle x \rangle \neq \langle y \rangle$ implies $\{\bar{x}\} \cap \{\bar{y}\}$ is either ϕ or $\{x\}$ or $\{y\}$.
- 2) $\forall x, y \in X$, $\langle x \rangle \neq \langle y \rangle$ implies $d\{x\} \cap d\{y\} = \phi$.

DEFINITION 1.10. A topological space (X, \mathcal{I}) is ET_{α} ("essentially T_{α} ") if its T_0 -identification space [9] is T_{α} .

PROPOSITION 1.11. [7] A topological space (X, \mathcal{I}) is a ET_{YS} -space iff, for arbitrary $x, y \in X$, $\langle x \rangle \neq \langle y \rangle$ implies $D\{x\} \cap D\{y\} = \phi$.

DEFINITION 1.12. [1] A topological space (X, \mathcal{I}) is a T_D -space if, for every $x \in X$, $d\{x\}$ is a closed set.

DEFINITION 1.13. [5] A topological space (X, \mathcal{I}) is a R^*_D -space if, for every $x \in X$, d(x) not closed implies $D(x) = \phi$.

The following diagram shows the ordering between the mentioned axioms.

PROPOSITION 1.14. [5] A topological space (X, \mathcal{I}) is a ET_D -space iff, for every $x \in X$, $D\{x\}$ is a closed set.

DEFINITION 1.15. [8] A topological space (X, \mathcal{I}) is a R_D -space if, for every $x \in X$, $\langle x \rangle = \{x\}$ implies $d\{x\}$ is closed.

2. New axioms

DEFINITION 2.1. A topological space (X, \mathcal{I}) is a C_0^F -space if, for every $x \in X$, $D\{x\} \neq \phi$ or $S\{x\} \neq \phi$ implies $\langle x \rangle \neq \{x\}$.

DEFINITION 2.2. A topological space (X, \mathcal{I}) is a T_T -space if, for every $x \in X$, $d\{x\}$ and $s\{x\}$ are degenerate and $\langle x \rangle = \{x\}$.

PROPOSITION 2.3. A topological space (X, \mathcal{I}) is a ET_T -space iff, for every $x \in X$, D(x) and S(x) are essential degenerate.

PROOF. Let (X_0, \mathcal{I}_0) be the T_0 -identification space of (X, \mathcal{I}) , let d_0 and s_0 be the correspondent derived and shell operators, and let π be the projection map from (X, \mathcal{I}) onto (X_0, \mathcal{I}_0) .

If (X, \mathscr{T}) is ET_T then (X_0, \mathscr{T}_0) is T_T and, hence, $\mathrm{d}_0\{\langle x \rangle\}$ and $\mathrm{s}_0\{\langle x \rangle\}$ are degenerate for every $\langle x \rangle \in X_0$. If $\mathrm{D}\{x\}$ is not essential degenerate then it is a union of distinct coverings. Since $\mathrm{d}_0\{\langle x \rangle\} = \pi(\mathrm{D}\{x\})$ (see [7]), $\mathrm{d}_0\{\langle x \rangle\}$ is not degenerate. Similarly, if we assume that $\mathrm{S}\{x\}$ is not essential degenerate,

then $s_0\{\langle x\rangle\}$ is not degenerate.

Conversely, if $D\{x\} = \langle y \rangle$ and $S\{x\} = \langle z \rangle$ then $\pi(D\{x\}) = d_0\{\langle x \rangle\} = \{\langle y \rangle\}$ and $\pi(S\{x\}) = s_0\{\langle x \rangle\} = \{\langle z \rangle\}$. Moreover, (X_0, \mathcal{I}_0) is obviously T_0 .

DEFINITION 2.4. A topological space (X, \mathcal{I}) is a R_T -space if, for every $x \in X$, whenever $D\{x\}$ or $S\{x\}$ is not essential degenerate, then $\langle x \rangle \neq \{x\}$.

3. Relations between the axioms

PROPOSITION 3.1.

- $1) \ T_1 \subset T_T \subset R'_T \subset ET_T \subset R_T,$
- 2) $R_0 \subset C_0^F \subset R_T$

PROOF. It is immediate.

LEMMA 3.2. In a topological space (X, \mathcal{I}) , for arbitrary $x, y \in X$,

- 1) $x \in D\{y\}$ iff $y \in S\{x\}$
- 2) $x \in d\{y\}$ iff $y \in s\{x\}$

PROOF. It is immediate.

LEMMA 3.3. In a topological space (X, \mathcal{I}) , for every $x \in X$,

- 1) $D\{x\}$ essential degenerate implies $D\{x\}$ closed
- 2) $d\{x\}$ degenerate and $\langle x \rangle = \{x\}$ implies $d\{x\}$ closed.

PROOF. Statement 1) follows from the fact that $D\{x\}$ is a union of closed sets and statement 2) follows from 1) through the canonical projection π .

PROPOSITION 3.4.

1)
$$T_T \subset T_D$$
, 2) $R'_T \subset R^*_D$, 3) $ET_T \subset ET_D$, 4) $R_T \subset R_D$.

PROOF. 1), 3) and 4) follow from lemma (3.3).

Let (X, \mathscr{T}) be a R'_T -space and let x be a point of X. Assume that $D\{x\}$ is degenerate and not empty, that is $D\{x\} = \{y\}$. If $d\{x\}$ is not closed then, from lemma 3.3, $d\{x\}$ is not degenerate and $\langle x \rangle \neq \{x\}$. Hence, there exists $z \in X$ such that $z \neq x$ and $z \in \langle x \rangle$. From lemma 3.2, $x \in S\{y\}$, and it is clear that $z \in S\{y\}$, in contradiction with the hypothesis.

PROPOSITION 3.5.

1)
$$T_T \subset T_{YS}$$
 2) $R'_T \subset R^*_{YS}$ 3) $ET_T \subset ET_{YS}$

PROOF. Let (X, \mathcal{T}) be a T_T -space. If for two distinct points x, y belonging X, there exists $z \in d\{x\} \cap d\{y\}$ then, from lemma 3.2, $x, y \in s\{z\}$, in contradiction with the hypothesis.

Statement 2) may be proved in the same way.

Let (X, \mathscr{T}) be a ET_T -space. If for two points $x, y \in X$ such that $\langle x \rangle \neq \langle y \rangle$ there exists $z \in D\{x\} \cap D\{y\}$ then $D\{x\} = D\{y\} = \langle z \rangle$. Hence, from lemma 3.2, $x, y \in S\{z\}$ and $\langle x \rangle$, $\langle y \rangle \in S\{z\}$, in contradiction with the hypothesis.

The following diagram shows the ordering relation between all the above axioms.

All the axioms are distinct. In the following examples the space X is the set of real numbers and it is understood that the null set and the set X are closed.

EXAMPLE 3.6. Let the closed sets be $\{x\}$, $\{-x,x\}$ $\{x\geq 0\}$ and their finite unions. This space is T_T but not C_0^F .

EXAMPLE 3.7. Let the closed sets be $\{x,0\}$, $\{x,-x,0\}$ $(x\geq 0)$ and their finite unions. This space is T_D but not ET_{VS} or R_T .

EXAMPLE 3.8. Let the closed sets be $\{x\}$ $(x\neq 0)$ and their finite unions. This space is T_{VS} but not R_T .

EXAMPLA 3.9. Let the closed sets be $\{-x, x\}$ $(x \ge 0)$ and their finite unions. This space is R'_T but not T_T .

EXAMPLE 3.10. Let the closed set be $\{0\}$. This space is ET_T but not R'_T .

EXAMPLE 3.11. Let the closed sets be $\{0, 1, x\}$ $(x \in R)$ and their finite unions. This space is R_T but not ET_T .

Facultat de Matemàtiques Universitat de València Burjassot (València), Spain.

REFERENCES

- C. E. Aull and W. J. Thron., Separation axioms between T₀ and T₁, Indag. Math. 24 (1962), 26-37.
- [2] A.S. Davis., Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886-893.
- [3] Ch. Dorsett., Ro and R, topological spaces, Mat. Vesnik 2 (15) (30) (1978), 117-122.
- [4] K.K. Dube., A note on Ro-topological spaces. Mat, Vesnik 11 (26) (1974), 203-208.
- [5] J. Guia., Essentially T_D and essentially $T_{U\!D}$ spaces, Submitted for publication in Per. Math. Hungarica.
- [6] _____, Axioms weaker than R₀, To appear in Mat. Vesnik.
- [7] R. Lledó and J. Guia., Espais essencialment T_{DD}, T_F, T_Y, T_{YS} i T_L, Stochastica VII, No. 3 (1984). To appear.
- [8] D. N. Misra and K. K. Dube., Some axioms weaker than the R₀ axiom, Glasnik Mat. 8 (1973) 145-147.
- [9] W.J. Thron.,, Topological Structures, Holt, Rinehart and Winston. New York, 1966.
- [10] J. Tong., On the separation axiom Ro, Glasnik Mat. 18 (38) (1983), 153-155.