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1. Introduction

Characterizations for linearly compact semisimple rings were obtained in [8,
9] and a similar characterization for linearly compact commutative rings was
studied in [6]. In addition to these characterizations, and among other results,
we will show that a linearly compact left duo ring is OM-semisimple if and
only if it is rationally complete and biregular [1] or equivalently it is semisimple
and its structure space is extremally disconnected.

2. Definitions and Notations

In this paper A will denote an associative ring with 1, not necessarily com-
mutative, and all modules will be left unitary modules. Furthermore, all
topological spaces are Hausdorff. A topological module is called linearly topo-
logized if it admits a neighborhood base for zero consisting of submodules, By
a linear variety in a module K we shall mean a coset of a submodule of K. A
linearly topologized module K is linearly compact if every collection of closed
linear varieties in K with the finite intersection property has a non-void inter-
section. A topological ring A is linearly compact in case it is a linearly compact
A-module. A ring is a left duo ring if each left ideal of A is an ideal. Thus A
is left duo if and only if, for each r=A, rAZ”Azr. Right duo-ness has the
obvious definition. For fundamental definitions and results related to rational
extensions of rings, we refer to [3], [4] and [7]. The symbol Q(A) will repr
esent the rational completion of a ring A. Also, we use Q(A) to denote the
set of all maximal left ideals in A and, for each a=A, Q(a)={M|M&=Q(A) and
aéM}. In case A is a left duo ring, Q(A) can be endowed with the Stone-
Zariski topology having the family {@Q(a)|a=A} as a base. The space 2(A)
thus defined is called the structure space of A. It is well known in [1] that if
A is a biregular ring then A is semisimple and 2(A) is compact zero dimen-
sional and A contains the characteristic function of any compact open subset
of Q(A). Now let I' be a subset of 2(A) with APE['M=(0). and let B(I")={I|!
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is a left ideal in A and / contains a finite intersection of members of I'}.
Then B(I') is a base for a neighborhood system of 0 in A, and the linear
topology on A thus generated by I’ will be termed the I'-topology. Also, we
use the notations Q.(A) and @,(A) to symbolize the set of all open maximal
left ideals, and the set of all rationally non-dense maximal left ideals, in A
respectively. A linearly topologized ring A is OM-semisimple ifM . ﬂ(zl) M=(0).

— g

In what follows, a ring is said to be semisimple if its Jacobson radical is
zero. We shall require the following theorems.

THEOREM 2.1 ([7), [4]). If (AJi€]) is a family of rings, then Q(ILA)
=1, 04).

=ict
THEOREM 2.2 ([9]). A linearly compact ring A is semisimple if and only if
every linearly compact A-module is injective.

3. Main Results
We first prove the following lemma.

LEMMA 3.1. Let A be a linearly compact semisimple left duo ring, and let M
be an open mazximal left ideal in A. If M’ is any mazximal left ideal in A with
M’'#M, then M and M’ can be separated by basic open sets in the structure space
of A.

PROOF. We note that M is also closed. Thus M is a linearly compact A-
submodule of A. Therefore M is injective by Theorem 2.2. It follows that
there is a submodule L of A such that MBL=A. Then there exist m&M and
bEL such that 1=m-+b with 60 and bEM. Let a=M\M’'. Since a=a(m+b)=
am-+ab, we have a—am=ab, and hence ab=M. But ab=L. This implies that
ab=0. Consequently Q(a)NQ(6)=Q(ab)=¢ and MEQ(b) and M'EQ(a).

For a completely regular space X we use the symbol X to denote the Stone-
Cech compactification of X. We now state our main result.

THEOREM 3.2. Let A be a linearly compact left duo ring. Then the following
statements are equivalent.

(1) A is OM-semisimple.

(2) A=TTA/M (ME2,(A)).

(3) A is rationally complete and biregular.

(4) A is semisimple and Q(A) is extremally disconnected.



Linearly Compact Left duo Rings and Their Structure Spaces 39
(5) A is semisimple and Q(A)=7582.(A).

PROOF. (1)=(2). A can be embedded into the product space NA/M(M;E€Q.).
Let # be the embedding and A=rx(A). Since A is linearly compact, it is closed
in the space [1A/M,; by [10]. Thus it suffices to show that Ais topologically
dense in [JA/M;. Note that the space A/M; is discrete for each M;€Q.. For
p ' a, in A, we denote {a)=a;+M; for each i€(l, 2, -, n}.
Thus each {a;) is open in A/M,. Let [[W, be a basic open set in [|A/M, where
W,={a, for i€{l, 2, -+, n) and W,=A/M; for all i€E{1, 2, =+, n}. By Lemma
3.1 there exist nonzero elements €p €p =y €, in A such that MEQ(c;) for
each i={l, 2, ---, n} and .Q(c'.)ﬂﬂ(cj)=¢ for distinct ¢ and j in {1, 2, -+, n}.
Hence we have c‘EMJ. for i##j. Since M, is maximal for each i, there exist
elements 4, b,, -+, b, in A such that bc+M,=1+M, for each i€(l, 2, -+, n}.
Now let a=ab c +abc,++abe,++abc,. Then a€EA and a+M;=(ab

i M Rl 7% nnn 11
tabe,t e tabe A tab e ) Mi=ad e, M=a b+ M) =a,+M,; for each
i€(l, 2, -, n}. That is a+M;={a,). Also note that a+MPEA/MP for p={1, 2,
w+, n}. This implies that 4€[[W,; where d=rx(a). A is topologically dense in
[A/M, (Mx-EQ,).

(2)=(3). Let acA. We claim that (a)=(¢) for an idempotent e in the center
of A where (a) denotes the two sided ideal generated by a. Let MeEeQ.. If
a(M;)=a-+M+0, then there exists an z,€A such that za+M=1+M, Define
a function 2 :Q9.—-UA/M; (M;€Q.) by

#,(M,) for M, if a(M,)#0

0 for M, if a(,)=0.

elements a pa

#(M,)=

Let z&x” '(£) and e=za. Since (£4) (M,)=2(M)a(M,)=%,(M;)a(M,)=(%,4)(M,)
=::x.a+M,.=‘l‘(M’.) for each M; with 4(M;)7#0, e is an idempotent. Also for
bEA, we have be=eb, and clearly (a)=(e). Thus A is biregular. Using Theorem
2.1, we have Q(A)‘:‘MQQEQ(A/M) EMQQ,,A/MEA' Thus A is rationally complete.

(3)=>(4). Let A be the set of all idempotents of A. Then by [5], Q(AD)E
Q(A). Since A is rationally complete, A is also complete [3]. Thus Q(4) is
extremally disconnected and so is 2(A). A is semismple as stated earlier.

(4)=(5). It is well known that a compact Hausdorff space is extremally
disccnnected if and only if it is a Stone-Cech compactification of every dense
subspace of the space. Since a linearly compact semisimple ring is OM-semisimple
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(see [6]), Q.(A) is dense in 2(A). Thus Q(A)=52.(A).
(5)=>(1). If 2(A)=pQ.(A), then Q.(A) is dense in 2(A). Hence NQ.(A)=
NQ(A). But A is semisimple, and thus NQ.(A4)=(0).

4. Applications

LEMMA 4.1. If A is semisimple commutative, then a maximal ideal M is not
rationally dense in A if and only if {M}=2Q(a) for some a70 in A.

PROOF. Let M be rationally non-dense in A. Then there exists a0 in A
with aM=0, i.e., am=0 for all m in M. Hence Q(a)(1Q(m)=¢ for each m&M.
Let Z(m)=Q(A)/Q(m). Then Q(a)< N Z(m). But M Z(m) contains at most

meM meM

one element. Since Q(a)#¢, we have Q(a)={M]}. Conversely, if {M}=0(a)
for some a+#0, then a€M’ for all M'EQ2(A) with M'#M. We note that
aMCM(’E(E(}‘\;I') NM=(0). Thus aM=0. It follows that M is not rationally dense
M#E=M
in A.
PROPOSITION 4.2, A linearly topologized Boolean ring is linearly compact if
and only if it is compact.

PROOF. If A is a linearly compact Boolean ring, then for each open maximal
ideal M, A/M is compact. By Theorem 3.2. A is compact. The converse is

clear.

PROPOSITION 4.3. A Boolean ring A is complete and atomic if and only if it
is compact with respect to QF(A)—topology.

PROOF. If A is complete and atomic, then the space 2(A) is extremally
disconnected and it contains a dense subset I of isolated points in 2(4). By
Lemma 4.1 the isolated points in Q(A) are precisely the rationally nondense
maximal ideals in A. Thus E=Q?(A). Note that [ {.'IHMEQP(A)}=(O). Hence
A is a linearly topologized ring endowed with the @ (A4)-topology. Also note
that every element of Q’(A) is open. Furthermore A can be considered as a
subring of [[A/M (MEQ,(4)). Now take an element a in [[A/M. Let S={M|M
€2, (A) and a(M)=1} and Z={M|MQ,(A) and a(M)=0}. Then both § and Z
are open and disjoint subsets of 2(A). Since 2(A) is extremally disconnected, we
have §NZ=¢, where “—” denotes the closure operator. Thus there exists a
characteristic function a* in A such that a*(M)=1 for all M in § and a*(M)=0
for Me=S. Hence a*=a. It follows that A=ﬂA/M(MEQ’(A)) and A is compact.
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Conversely, if A is compact with respect to the Q_(A)-topology, then it is
linearly compact with respect to the same topology. By Theorem 3.2 A is
complete. Since QF(A) is a dense subset of isolated points, the Boolean ring A
is atomic.

PROPOSITION 4.4. Let X be a space of nonmeasurable cardinal [2]. Then C(X),
the ring of real-valued continuous functions on X, is linearly compact if and only

if the space X is discrete.

PROOF. If C(X) is linearly compact, then by Theorem 3.2 it is a regular
ring. Hence X is a P-space [2]. Also by Theorem 3.2 8X is extremally discon-
nected, and so is X. Thus X is discrete. The converse is evident.
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