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ON DISTRIBUTIVE AND MODULAR NEARLATTICES
By Juhani Nieminen

1. Introduction and basic concepts

A meetsemilattice S, where any two elements b and ¢ have a least upper
bound &\/¢ whenever there is an upper bound for 4 and ¢ in § is called in [3]
a nearlattice. As reported in [3], nearlattices constitute a natural generalization
of lattices, and their ideals provide a handy tool for analyzing nearlattices.
The purpose of this paper is to describe the structure of nearlattices by means
of appropriate algebras, ideals, dual ideals and multiplicative closure operators.

At first we consider an algebra associated with a nearlattice N. Because N
is a meetsemilattice, we define &/ \c=glb{é,c}, the greatest lower bound of &
and ¢, for any two b,¢&N. Further, if there is an element d>b,¢ in N, we
define &\/c=lub(b,c}, the least upper bound of & and ¢. If the set ub{é,c} is
empty, we define &\/c=b/\¢c. Thus a nearlattice N is an algebra with two
binary operations \/ and /. The properties of the operations characterize a
nearlattice completely as stated in the following two lemmas.

LEMMA 1. Let the poset (P,>) be a nearlattice. Then the nearlattice (P, \/,
A)=N is an algebra with operations /\ and \/, where a/\b=glb{a,b} and a\/b=
lub{a, b} whenever ubla,b}+¢ and otherwise a\/b=a/\b, satisfying the following
properties for all a,b,c=P:

(1) aNa=a; (') a\/a=a;

(2) aN\b=b/\a; (2) a\Vb=bVa;

(3) an(bAe)=(ar\b)/\e;

(4) if a#b, c/a=a and c/\b=b, then a/\bFa\/b;

(5) if aVe=b\c=c, then (a\/b)\/c=a\/(B\/c);

(6) if a\/b=c, or if a\/bFc and c\/(a\/b)Fc/\(a\/b), then (a/\b)/\((a\/b)\/c)

=a/\b;

(7) aNb=asa\/b=b.

PROOF. (1),(2) and (3) follow from the fact that (P, >) is a meetsemilattice.

(1) and (2’) are trivial. In (4) ¢/A\e=a and ¢/\b=>b imply that c=ub{a, b} in
(P,>), whence a\/b=Ilub{a,b). Now, when a#5, glb{a,b}Nlub{a,b)=¢, and
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thus a\b#a\/b. If a\/b=c in (6), then obviously (a/\b)A((a\/b)/ \c)=a/\b.
If a\/b%c and ¢\/(a\/b)#c/\(a\/b), then ub{a\/b,c}=¢ and thus ((a\/b)\Ve)=
a\/b in (P,>). This implies (a/\&)/\((a\/b)\/c)=a/\b, and (6) follows.

We show next the validity of (7). If aAé=a, then a<é in (P,=), and thus
a\/b=lub{a, b} =b. This proves = ; the proof for < is similar when lub{a, &} 4.
So let lub{a,b)=¢, and thus b=a\/b=a/\b, whence b=glb{a,b} and <a in
(P,>). But then a=lub(a, b}#¢, which is a contradiction. Hence (7) holds.
At last we prove (5). When a‘\/c=b\/c=c¢, then a,b<c, and thus a\/b=Ilub
{a,b}<c. Then, in particular, (a\VVb)\Ve=c=a\e=a\/(b\VVc).

LEMMA 2. If (P,\/, /\) is an algebra with binary operations \/ and /\ satisfying
(D~(T), (1) and (2’), i.e. a nearlattice, then a\b=a<=>a<b determines a partial
order on P and the poset (P,>>) is a nearlattice. If the nearlattice (P,=>) determines
a nearlattice (P, \/, N\)=N, and if N determines further a nearlattice (P,=),
then (P,=>)=(P,=). Moreover, if (P,=) determines a nearlattice (P, ), N)=N’,
then N=N’,

PROOF. According to (1)~(3) the relation>>given by the rule “a<bésa/\b=
a” is a partial order on P, and a/\b=glb{a,b} in the poset (P,>=) derived
from (P, \/, /\). So it remains to show that a\/b=Ilub{a, b} if ubla,b}#g. If
a=b, then a\/a=a=Ilub{a,b}. Hence we assume that a#é and a\/b#a/\b; (4)
contradicts the assumption that a\/b=a/Ab and ub{a, b} #¢ for ab. By (6) we
obtain now that aA(aVé)=(aNa)A\((a\/a)\V/b)=a/\a=a, whence a<a\/b.
Similarly we see that b<<a\/b. Thus a\/b=ub{a, b}+¢. If now there is an
element ¢>>a, b, then by (5) we see that (a\/b)\V/e=a\/(6\/c)=a\/c=¢, whence
a\/b=Ilub{a, b). The assertion (P, >)=(P, =) follows now from the equivalences
a<bsa/\b=a%a='b; also the assertion N=N’ is now obvionsly true,

In what follows, we write N=(N,\/, A) for a nearlattice. Note that \/ is
not in general associative in a nearlattice.

2. Distributive and modular nearlattices.

A nearlattice N=(N, \/, /\) is distributive (modular) if and only if D, and D,
(M, and M,) below hold for all a,4,c=N: :

D, s a/\(BVe)=(a/N\b)V (a/\e); D, : a\/(b/\c)=(a\V/b)/\(aVe);

M, 2 a/\(BV (a/\e)) =(aN\b)V/ (a/\e); M, : a\V/ (b (aVe)) =(aVb) \(aVe).

Clearly every distributive N is also modular and every distributive (modular)
lattice is also a distributive (modular) nearlattice. Note that every distributive
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meetsemilattice need not be a distributive nearlattice. The equality sign need
not hold in D, D,, M; and M,; this can be seen by considering e.g. finite

trees which are distributive nearlattices.

LEMMA 3. Let N be a nearlattice. Then D, is equivalent to D, as well as M,
to Mz'

PROOF. We prove the implication DD, only; the other proofs are analo-
gous and hence omitted. Let us consider the expression (a\/b)/\(aV/e) in N.
Three cases arise: 1) a\/b*%lub(a, 8} and a‘/c*#lub{a,¢}; 2) a\/b=lub{a, b} and
a\/e#lub{a, ¢} (or a\/b+lubla, b} and a\/c=lubla,¢}); 3) a"/b=lub{a, b} and &'/
c¢=lub{a, c}.

1) (aVb)NA(aVe)=arbNaNe=a b A\c<a\/(b/c), because z/\y<z\/y holds
for all pairs z,yEN.

2) Assume that a\/é=Ilub(a, &} and a\/c#lub(a,c}. Because N is a meetsemi-
lattice, #/\¢<b, and because a\/&# is now an upper bound of & and &, an upper
bound of a and b/\¢ also exists, whence a\/(b/\c)=>a. Now a\/(b/\c)=a=a/\
c=(a\V/b) A\(aX\e)=(a\/b)/\(aVc).

3) (aVb)A(aVe)<((a\VV/b) Na)\/((a\/b) N\e)=a\/((a/\b)\/c)

<aV/((a/N\e)V(eNb))=(a\/ (a/\c))V (b/\e)
=a\/(c/\b).

As expected, distributive (modular) nearlattices have the following structure

THEOREM 4. A nearlattice N is distributive (modular) if and only if the set
{dl={z|xEN and x<d} is a distributive (modular) lattice for every d=N.

PROOF., Assume that (d] is a distributive lattice for all d=N. when a,b,c=
(d]l, then D, and D, hold for them. Assume now that a,6 and ¢ are three
elements such that there is no (d] in N containing them. When proving the
validity of D, for a,b and ¢ two cases arise: 1) b\/c*b/\¢ and 2) b\/c=b/\c.
When 2) holds we obtain: a/\(6\/c) =a/\(b/\c)=(a/\b) N\ (a/\c)=(a/\&)\/(a/\c).
When 1) holds we write t=a/\(6"/c). Clearly t,b,¢,a/\c=(b\/c]. In the lattice
(b/\c] we obtain now: a/A(b\Ve)=tNA(BVe)=0UNbB)N/ (t/\e) =(aNb)\/(a/\c).
Thus D, holds and by Lemma3 N is a distributive nearlattice. Conversely,
when N is distributive, then the validity of D, in a lattice (d] implies the
distributivity of (d], and the theorem follows in the distributive case.

The converse proof in the modular case is also obvious. When proving the
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first part in the modular case, two subcases arise: 1) &\/(a/\¢)#b/\(a/\¢) and
2) bA(aNe)=b\/(a/\¢). The subcase 2) is obvious. In 1) we write t=a/(bV/
(a/\¢)) and observe that t,a/\b,a/\c b=(b\/(a/\c)]. Moreover, t/\(a/\c)=a/\c,
and by using now the modularity in the lattice (5\/(a/\¢)] we obtain a/\(s\/
(a/\¢))=(a/\b)\/(a/\c). Hence M| holds and the modularity of N follows from
Lemma 3. This completes the proof.

We call a nonempty set IZN an ideal if and only if (i) and (ii) below
hold: (1) x<<a<I implies z=1; (ii) a, b=I implies a\/b=I. One can easily see
that the intersection of two ideals J and J of N is also an ideal and it is the
greatest ideal contained in / and J. Hence the ideals of N constitute a lattice
I(N). It is known, that N is distributive if and only if I(N) is a distributive
lattice. It is also known that if /(N) is modular, then N is modular, but the
converse need not hold. Thus the modular case is of interest and in order to
give a characterization we recall the concept of a relative annihilator. The
annihilator {a, &) of a relative to b is the set (x|2&N and aAz<é} [2]. Man-
delker proved in [2] that a lattice L is distributive if and only if (a,4) is an
ideal for all @, 6L. He proved further that L is modular if and only if when-
ever b<a, if z=(b] and y=(a,b), then z\/y&{(a, b). Both theorems can be
proved for nearlattices but we recall the proof only in the modular case.

THEOREM 5. A nearlattice N is modular if and only if whenever b<a, if xE(b]
and y&{a, by, then z\/v={a,b).

PROOF. Let N be modular, #<a, 2=(b] and y={a,b). Then z=z a<b,
y/\a<b, and thus a/\(3\/x)<(a/\z)\/(a/\»)=b, whene z\/y={a, ;. Conversely,
let z,3zeN. Thus zAze((z/Az)V(2/\y)] and ye<lz, (zAz)V(z/N\y)). By
hypothesis (z/A\z)VyeE<z2, (2AZ)V(2/\2)>, 1.e. 2A((2AZ) V) <(2A\2)V(2/N\Y).
By Lemma 3 this proves the modularity of N.

The distributivity as well as the modularity of a nearlattice N can be chara-
cterized by means of their dual ideals. A nonempty set DZN is called a dual ideal
of N if (i) and (ii) below hold: (i) x>d=D implies zED; (ii) a,b&D implies
a/\b=D. A joinsemilattice, where any two elements having a lower bound
have also a glb{a, 4} is called a dual nearlattice. The dual ideals D(N) of a
nearlattice N constitute obviously a dual nearlattice, where D\/J={K|KED
(N) and D,JCK}. Moreover DAJ=DNJ if DNJ+#é, and otherwise DAJ=D
\/J in D(N). A dual nearlattice dN is called distributive (modular) if and only
if D, and D, (M, and M,) hold for all a,b cEdN. Obviously, Lemma 3 as
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well as the dual of Theorem 4 hold for dual nearlattices. Now we can prove

THEOREM 6. A nearlattice N is distributive (modular) if and only if the dual
nearlattice D(N) of all dual ideals of N is distributive (modular).

PROOF. As one can easily see, D\/J=(z|z>d Jj, d=D, j&J} for all D, J=
D(N).

Assume first that N is distributive. We prove the distributivity of D(N) by
showing the distributivity of every lattice [D) in D(N). Let J, M, J=[D). Obvio-
usly (M/J) N (M I)#¢ and hence we may assume that t(M\/J) A\(M\/1). Thus
rzml/\j’ and t=m,/\i’ with m,, m,EM,J’&J and i'€l. Clearly t=m/\J, m/\i,
where m=m /\m,EM, and j and i can be choosen such that j,i<d for some
d=D. Because of the distributivity of N,:=>(mAJj)\/ (mAi)=m/\(j\/i), where
meM and j\Vi=lub{i,j}€INJDD+#¢. Thus t=M\/(JAI) and (M\/J)A(MI)
<M\/(JAI), which proves the distributivity of [D).

Let conversely D(N) be a distributive dual nearlattice. We show the distri-
butivity of N by showing the distributivity of the lattice (d]CN for every
d=N.. Let a,b,c=(d], whence [a),[b), [c)=[[d)) in D(N). The least element
of ([@)VIB))A([a)V]e)) is (a/\b)V(a/\¢) and that of [a)\/([b)Alc)) is a/\
(6\/c). Because ([a)\/[8))A([a)V[e))<[a)\/([6)/A\[c)) in D(N), we obtain a
Ab\Ve)=(a/\b)\/(a/\c), which implies the distributivity of (4] in N.

The proof for the modular case is similar and hence omitted.

A convex subnearlattice S of a nearlattice N is a nonempty set such that if
a, b=S then a\/b, a/N\b<S, and if further a<z<) then 2=5. Clearly S=(S]N
[8) and every convex subnearlattice § of N has a unique representation as the
intersection of an ideal and a dual ideal of N. The convex subnearlattices S of
a nearlattice N constitute a dual nearlattice Csub(N), where S NS,=8,NS, if
S,NS,#¢.

THEOREM 7. A nearlattice N is distributive if and only if the dual nearlattice
Csub(N) is distributive. If I(N) is a modular lattice, then Csub(N) is a modular
dual nearlattice, and if Csub(N) is modular, then also N is modular.

PROOF. Assume first that N is distributive; we show that [S) is distributive
for all S&Csub(N) from which the distributivity of Csub(N) follows. Let U, T,
velS). Now (TVOIATVV)=((TVUONTVV)INUTVUINTVV))=(T\VU]
N(T\VUINITVU) NITVV), where (TVUIN(TVV]I=(TIV(U)NUTIV(V])<
(TIV UV (VD) =(TIV(UAVI=(TV(UAV)] by the distributivity of I(N), and
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analogously, [TVU)N[TVV)<[TV/(UAV)) by the distributivity of D(N).
Thus (UVT)A(TVV)S(TV(UAV)INITV (UAV)) =TV (UAV), which proves
the distributivity of [S). The modularity of Csub(N) can be proved similarly.

Conversely, let Csub(N) be distributive. Then all dual ideals of N satisfy
the distributivity laws and the distributivity of N can be proved as in the
proof of Theorem 6. This holds also for the modular case.

Because a lattice is modular if and only if /(L) is modular, we can write a
corollary

COROLLARY 8. A lattice is distributive (modular) if and only if the dual
nearlattice Csub (L) of convex sublattices of L is distributive (modular).

3. Closure operations

In this section we characterize the distributivity and modularity of nearlatti-
ces N by means of closure operators on N. Following Cornish [1] we call an
operator 4 on N a multiplicative closure operator if the conditions (i)~ (iv)
below hold for all a,6&N: (1) A(a)<a; (i1) A(A(a))=1A(a); (iii) a<b implies
Ala)<<Ath); (iv) A(a/\b)=A4(a)/\A(b). An operator = on N is called a transla-
tion on N if z(aAb)==(a)/\b for all a,bN. As proved by Szasz [4] every
translation is a multiplicative closure operator on N. At first we characterize
trees; a nearlattice N is a tree if and only if every two noncomparable elements
have a common upperbound in N.

THEOREM 9. A nearlattice N is a tree if and only if every multipltcative closure
operator A on N has the property 1(a\/b)<<A(a)\/A(b) for all a,b=N.

PROOF. Let N be a tree and 1 a multiplicative closure operator on N. If
aVb=a/\b, then A(a\/b)=A(a/N\b)=A(a) \A(b)<i(a)\/A(b). If a\/b#a/\b, then
either a<b or b<<a. When a<b, we obtain A(a) <A(b), and thus 1(a\/b)=21(b)
=A(a)\/A(b). The proof is similar for 6<<a. Accordingly, A(a\/&)<A(a)\/Ai(d)
for all a,b=N.

Conversely, let the condition hold for every multiplicative closure operator
on N, and assume that there exist two noncomparable elements a. 5N such
that a\b<<a,b<<a\/b. We define a mapping A : N—N as follows: if t>a\/b in
N, then A(¢)=a\/b, and otherwise A(t)=t/\a/\b. By a direct computation one
sees that 1 is a multiplicative closure operator on N. But now A(a)\/A(é)=(a
NN (a/\b) =a/\bZa\/b=1(a\/b), which is a contradiction. Hence two nonco-
mparable elements cannot have a common upper bound in N, and thus N is a
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tree.

The following two theorems are modifications of corresponding results in-
[4]. Obviously a mapping 7 (b)=a/\b is a translation for every a=N on a
nearlattice N.

THEOREM 10. A nearlattice N is distributive if and only if every translation w
on N has the property n(a\/b)<<z(a)\/z(b) for all a,b=N.

The proof of Theorem 10 is analogous to that of Theorem 11 below, and
hence we omit the proof of Theorem 10.

THEOREM 11. A nearlattice N is modular if and only if every translation T on
N has the property = (a\/b)<m(a)\/z(b) for all a,b=N with m(b)=b.

PROOF. Let N be modular and = a translation on N. If a\/b=a/\b, then
obviously 7(a\/b)<z(a)\/z(b). Thus let a\/b%#a/\b and b=x(b). Now a\/b=>b,
whence n(a\/b)>rn(b)=b as well as z(a\/b) Az(b)==(b). Then =(a\VVb)=r
((a\Vb) N\ (a\/b))=n(a\/b) N\(a\/b)=n(a\/b) \(a\V/x(b))=x(a\/b) N\ (a\V/x(aVb) N7
(8)))<z((aVE)N\a)V (x(a\/b)\x (b)) == ((a\/b)A\a)\/z((a\/b) \b)==(a)\/x(b).
Hence 7(a\/b)<r(a)\/z(b).

Let, conversely, every = on N has the property of the theorem. Then a/\
(8 (a/\e))=m, (b (cN\a)) =7, (b)), (a/\c)=(a/\b)\/(a/\¢c), from which the
modularity of N follows by Lemma 3.

Faculty of Technology
University of Oulu
90570 Qulu 57

Finland

REFERENCES

[17 W.H. Cornish, Pseudocomplemented modular semilattices, J. Aust, Math. Soc., 18

(1974), 239—251,
[2] M.Mandelker, Relative annihilators in lattices, Duke Math. J., 37(1970), 377—389.
[3] A.S. A, Noor, Isotopes of nearlattices, Bull. Aust, Math. Soc., 22(1980), 472—474,
[4] G.Szasz, Translationen der halbverbinde, Acta Fac. R. Nat, Univ. Comenianae Math.,

5(1961), 449—453.



