ROTATIONAL MENDELSOHN TRIPLE SYSTEMS

By Chung Je Cho

1. Introduction

A cyclic triple is a set T of three ordered pairs such that an element occurs as a first coordinate of an ordered pair in T if and only if it occurs as a second coordinate of an ordered pair in T. We will denote the cyclic triple $\{(a, b),(b, c),(c, a)\}$ by $(a, b, c),(b, c, a)$ or (c, a, b). A Mendelsohn triple system MTS (v) of order v is a v-set and B is a collection of cyclic triples of elements of V (called blocks) such that every ordered pair of distinct elements of V belongs to exactly one block. It is well-known [5] that a MTS(v) exists if and only if $v \equiv 0$ or $1(\bmod 3)$ and $v \neq 6$. An automorphism of a $\operatorname{MTS}(v)(V, B)$ is a permutation α on V which preserves B. A MTS (v) is said to be k-rotational if it admits an automorphism α consisting of a single fixed element and exactly $k \frac{(v-1)}{k}$-cycles; and α is called a k-rotational automorphism. If a permutation α of degree v consists of a single v-cycle, then a $\operatorname{MTS}(v)$ admitting α as its automorphism is called cyclic. It is shown by Colbourn and Colbourn [1] that a cyclic MTS (v) exists if and only if $v \equiv 1$ or $3(\bmod 6)$ and $v \neq 9$.

In this paper, we obtain a necessary and sufficient condition for the existence of 1-rotational MTS(v).

A Steiner triple system $\operatorname{STS}(v)$ of order v is a pair (V, B) where V is a v-set and B is a collection of 3 -subsets of V (called triples) such that every 2 -subset of V belongs to exactly one triple. It is well-known that a $\operatorname{STS}(v)$ exists if and only if $v \equiv 1$ or $3(\bmod 6)$, and Peltesohn [6] first shows that a cyclic STS (v) exists if and only if $v \equiv 1$ or $3(\bmod 6)$ and $v \neq 9$.

An (A, k)-system is a set of ordered pairs $\left\{\left(a_{r}, b_{r}\right) \mid r=1,2, \cdots, k\right\}$ such that $b_{r}-$ $a_{r}=r$ for $r=1,2, \cdots, k$, and $\cup_{r=1}^{k}\left\{a_{r}, b_{r}\right\}=\{1,2, \cdots, 2 k\}$. It is well-known [see 7] that an (A, k)-system exists if and only if $v \equiv 0$ or $1(\bmod 4)$.

2. 1-Rotational Mendelsohn Triple Systems

Let Z denote the set of all integers and let Z_{v} be the group of residue classes
of Z modulo v. Throughout, we assume that the set of elements of 1 rotational $\operatorname{MTS}(v)$ is $V=Z_{v-1} \cup\{\infty\}$ and the corresponding 1-rotational automorphism is $\alpha=(\infty)(01 \cdots v-2)$.

For each element $a \in Z_{v-1}$, define $a \pm \infty= \pm \infty$. We can associate each cyclic triple (a, b, c) of elements of $Z_{v-1} \cup\{\infty\}$ with a difference triple (x, y, z) where $x \equiv b-a, \quad y \equiv c-b, \quad$ and $z \equiv a-c(\bmod v-1)$. Note that the cyclically shifted cyclic triples of a cyclic triple are equivalent, i.e. they contain the same ordered pairs and hence the cyclically shifted difference triples of a difference triple are equivalent, i.e. they correspond the same cyclic triples. Also, note that difference triples are of two types: either an ordered triple (x, y, z) for which $x+y+z \equiv 0(\bmod v-1)$ or $(x, \infty,-\infty)$ and $x \neq \infty$. An orbit of a 1-rotational $\operatorname{MTS}(v)$ is a collection of all blocks with the same difference triple. Thus, each orbit of a 1-rotational MTS(v) corresponds a unique difference triple, and conversely. A collection of starter blocks of a 1 -rotational MTS (v) is a collection of blocks which are taken exactly one from each orbit.

Applying Heffter's [4] two so-called difference problems (see [2] for a detailed description), a 1 -rotational $\operatorname{MTS}(v)$ for $v \equiv 0(\bmod 3)$ is equivalent to a partitioning of the set $\{1,2, \cdots, v-2\} \backslash\{k\}$ for some $1 \leq k \leq v-2$ into difference triples; here, a difference triple is an ordered triple (x, y, z) for which $x+y+z \equiv 0$ $(\bmod v-1)$. When $v \equiv 1(\bmod 3)$, a 1 -rotational $\operatorname{MTS}(v)$ is equivalent to a partitioning of $\{1,2, \cdots, v-2\} \backslash\{k, t\}$ for some $1 \leq k \leq v-2, t=\frac{v-1}{3}$ or $\frac{2(v-1)}{3}$ and $t \neq k$ into difference triples. These simple observations enable us to prove the follwing necessary condition.

LEMMA 2.1. If there exists a 1-rotational MTS(v), then $v \equiv 1,3$ or $4(\bmod 6)$.
PROOF First of all, we have $v \equiv 0$ or $1(\bmod 3)$ and $v \neq 6$, since this is the spectrum for $\operatorname{MTS}(v)$. In case $v \equiv 0(\bmod 6)$ and $v \neq 6$, the existence of a $1-$ rotational $\operatorname{MTS}(v)$ is equivalent to a partitioning of the set $\{1,2, \cdots, v-2\} \backslash\{k\}$ for some $1 \leq k \leq v-2$ into difference triples (x, y, z) for which $x+y+z \equiv 0(\bmod$ $v-1$). Since $v-1$ divides the sum of the differences in each difference triple, it divides the sum of all differences being partitioned into difference triples. Thus, $v-1$ divides the sum of the integers 1 through $v-2$ except exactly one integer, i. e. $\frac{(v-2)(v-1)}{2}-k \equiv 0(\bmod v-1)$ for some $1 \leq k \leq v-2$, but there is no such an integer k. Hence there exists no 1 -rotational $\operatorname{MTS}(v)$ for $v \equiv 0$ $(\bmod 6)$.

LEMMA 2. 2. [3]. There exists no 1-rotational MTS(10).

LEMMA 2. 3. If $v \equiv 4(\bmod 6)$ and $v \neq 10$, then there exists a 1-rotational MTS (v).

PROOF. Let $v=6 t+4$ and $t \neq 1$. Then

$$
\begin{aligned}
& \{(0, \infty, 2 t+1), \quad(0,2 t+1,4 t+2)\}, \\
& \{(a, b, c), \quad(a, c, b) \mid\{a, b, c\} \in C\}
\end{aligned}
$$

where $C \cup\{\{0,2 t+1,4 t+2\}\}$ is a collection of starter triples of a cyclic STS ($6 t+3$),
are a collection of starter blocks of a 1-rotational MTS($6 t+4), t \neq 1$.

LEMMA 2.4. If $v \equiv 7$ or $13(\operatorname{mcd} 18)$, then there exists a 1-rotational MTS (v).
PROOF. Let $v=6 t+1$ and $t \equiv 1$ or $2(\bmod 3)$. Then

$$
\begin{aligned}
& \{(0, \infty, t), \quad(0,4 t, 2 t)\} \\
& \{(0,3 r, 2 t-3+6 r) \mid r=1,2, \cdots, t\} \\
& \{(0,3 r, 6 r-4 t) \mid r=t+1, t+2, \cdots, 2 t-1\} \quad(t>1)
\end{aligned}
$$

are a collection of starter blocks of a l-rotational $\operatorname{MTS}(6 t+1)$ where $t \equiv 1$ or $2(\bmod 3)$.

LEMMA 2.5. If $v \equiv 1(\bmod 18)$, then there exists a 1 -rotational $M T S(v)$.
PROOF. Let $v=6 t+1$ and $t \equiv 0(\bmod 3)$. Then

$$
\begin{aligned}
& \{(\infty, 0, t), \quad(0,2 t, 4 t)\} \\
& \{(0,3 t+1-r, r) \mid r=1,2, \cdots, t\} \\
& \{(0, r, 7 t-r) \mid r=t+1, t+2, \cdots, 2 t-1\}
\end{aligned}
$$

are a collection of starter blocks of a 1-rotational MTS $(6 t+1)$ where $t \equiv 0$ $(\bmod 3)$.

LEMMA 2.6. If $v \equiv 3$ or $9(\bmod 24)$, then there exists a 1 -rotational MTS (v).
PROOF. Let $v=6 t+3$ and $t \equiv 0$ or $1(\bmod 4)$, Then

$$
\begin{aligned}
& \{(\infty, 0,3 t+1)\}, \\
& \left\{\left(0, r, b_{r}+t\right), \quad\left(0, b_{r}+t, r\right) \mid r=1,2, \cdots, t\right\}
\end{aligned}
$$

where $\left\{\left(a_{r}, b_{r}\right) \mid r=1,2, \cdots, t\right\}$ is an ($\left.A, t\right)$-system, are a collection of starter blocks of a 1 -rotational $\operatorname{MTS}(6 t+3)$ where $t \equiv 0$ or $1(\bmod 4)$.

LEMMA 2.7. If $v \equiv 15$ or $21(\bmod 24)$, then there exists a 1 -rotational MTS(v).
PROOF. Let $v=6 t+3$ and $t \equiv 2$ or $3(\bmod 4)$. Then

$$
\begin{aligned}
& \{\infty, 0,3 t+1)\}, \\
& \{(0, r, 3 t+1-r), \quad(0,5 t+2-r, r) \mid r=1,2, \cdots, t\}
\end{aligned}
$$

are a collection of starter blocs of a 1-rotational MTS $(6 t+3)$ where $t \equiv 2$ or 3 $(\bmod 4)$.

Summarizing, we have
THEOREM 2.8. A 1-rotational MTS(v) exists if and only if $v \equiv 1,3$ or $4(\bmod$ 6) and $v \neq 10$.

3. Concluding Remarks

Note that a 1-rotational MTS(v) exists for all admissible orders v which are the spectrum for the existence of a $\operatorname{MTS}(v)$, except for $v \equiv 0(\bmod 6)$ and $v=$ 10. If $v \equiv 0(\bmod 6)$ and $v \neq(6 t+1)(6 k-1)+1$, then $v-1$ is a prime number. Thus, for the orders $v \equiv 0(\bmod 6)$ and $v \neq(6 t+1)(6 k-1)+1$, only $(v-1)$-rotational $\operatorname{MTS}(v)$ are considered; clearly such systems exist as their existence trivially follows from the existence of MTS (since the $(v-1)$-rotational automorphism is exactly the identity automorphism). In addition, a 3-rotational $\operatorname{MTS}(10)$ exists. For example, $(\infty, 1,0),(\infty, 4,3),(\infty, 7,6),(0,1,3),(3,4,6)$, $(0,6,7),(0,4,8),(0,8,4),(0,3,6)$, and $(0,7,5)$ with $\alpha=(\infty)\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)\left(\begin{array}{lll}3 & 4 & 5\end{array}\right)$ (678) are a collection of starter blocks of a 3 -rotational MTS(10). Therefore, the only unsettled problem for the existence of rotational MTS is: If $v=(6 t+$ 1) $(6 k-1)+1$, do there exist a $(6 t+1)$-and a $(6 k-1)$-rotational, respectively, ?

Sookmyung Women's University Seoul, Korea

REFERENCES

[1] C.J. Colbourn and M.J. Colbourn, Disjoint cyclic Mendelsohn triple systems, Ars Combin., 11(1981), 3-8.
[2] M. J. Colbourn and R. Mathon, On cyclic Steiner 2-designs, Annals of Discrete Math., 7(1980), 215-253.
[3] B. Ganter, R. Mathon and A. Rosa, A complete census of (10,3,2)-block designs and of Mendelsohn triple systems without repeated blocks, Proc. Seventh Manitoba Conference
on Numerical Math. and Computing, 1977, 383-398.
[4] L. Heffter, Über Tripelsysteme, Math. Ann., 49(1897), 101-112.
[5] N.S. Mendelsohn, A natural generalization of Steiner triple systems, Computers in Number Theory (A. Atkin and B. Birch, editors), Academic Press, London, 1971, 323 -338.
[6] R.Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math., 6 (1939), 251-257.
[7] A. Rosa, Posnámka o cyklických Steinerových systémoch trojic, Mat.-Fyz. Čas., 16 (1966), 285-290.

