Kyungpook Math. J. Volume 26, Number 1 June, 1986

ROTATIONAL MENDELSOHN TRIPLE SYSTEMS

By Chung Je Cho

1. Introduction

A cyclic triple is a set T of three ordered pairs such that an element occurs as a first coordinate of an ordered pair in T if and only if it occurs as a second coordinate of an ordered pair in T. We will denote the cyclic triple $\{(a,b), (b,c), (c,a)\}$ by (a,b,c), (b,c,a) or (c,a,b). A Mendelsohn triple system MTS(v) of order v is a v-set and B is a collection of cyclic triples of elements of V (called blocks) such that every ordered pair of distinct elements of V belongs to exactly one block. It is well-known [5] that a MTS(v) exists if and only if $v\equiv 0$ or 1 (mod 3) and $v\neq 6$. An automorphism of a MTS(v) (V, B) is a permutation α on V which preserves B. A MTS(v) is said to be k-rotational if it admits an automorphism α consisting of a single fixed element and exactly $k \frac{(v-1)}{k}$ -cycles; and α is called a k-rotational automorphism. If a permutation α of degree v consists of a single v-cycle, then a MTS(v) admitting α as its automorphism is called cyclic. It is shown by Colbourn and Colbourn [1] that a cyclic MTS(v) exists if and only if $v\equiv 1$ or 3 (mod 6) and $v\neq 9$.

In this paper, we obtain a necessary and sufficient condition for the existence of 1-rotational MTS(v).

A Steiner triple system STS(v) of order v is a pair (V, B) where V is a v-set and B is a collection of 3-subsets of V (called triples) such that every 2-subset of V belongs to exactly one triple. It is well-known that a STS(v) exists if and only if $v \equiv 1$ or 3 (mod 6), and Peltesohn [6] first shows that a cyclic STS(v)exists if and only if $v \equiv 1$ or 3 (mod 6) and $v \neq 9$.

An (A, k)-system is a set of ordered pairs $\{(a_r, b_r) | r=1, 2, \dots, k\}$ such that $b_r - a_r = r$ for $r=1, 2, \dots, k$, and $\bigcup_{r=1}^k \{a_r, b_r\} = \{1, 2, \dots, 2k\}$. It is well-known [see 7] that an (A, k)-system exists if and only if $v \equiv 0$ or 1 (mod 4).

2. 1-Rotational Mendelsohn Triple Systems

Let Z denote the set of all integers and let Z_n be the group of residue classes

of Z modulo v. Throughout, we assume that the set of elements of our 1-rotational MTS(v) is $V=Z_{v-1} \cup \{\infty\}$ and the corresponding 1-rotational automorphism is $\alpha = (\infty)$ (0 $1 \cdots v - 2$).

For each element $a \in \mathbb{Z}_{v-1}$, define $a \pm \infty = \pm \infty$. We can associate each cyclic triple (a, b, c) of elements of $\mathbb{Z}_{v-1} \cup \{\infty\}$ with a *difference triple* (x, y, z) where $x \equiv b-a$, $y \equiv c-b$, and $z \equiv a-c \pmod{v-1}$. Note that the cyclically shifted cyclic triples of a cyclic triple are equivalent, i.e. they contain the same ordered pairs and hence the cyclically shifted difference triples of a difference triple are equivalent, i.e. they contain the same ordered triple are equivalent, i.e. they correspond the same cyclic triples. Also, note that difference triples are of two types: either an ordered triple (x, y, z) for which $x+y+z\equiv 0 \pmod{v-1}$ or $(x, \infty, -\infty)$ and $x \neq \infty$. An *orbit* of a 1-rotational MTS(v) is a collection of all blocks with the same difference triple, and conversely. A collection of starter blocks of a 1-rotational MTS(v) is a collection of starter blocks of a 1-rotational MTS(v) is a collection of starter blocks of a 1-rotational MTS(v) is a collection of starter blocks of a 1-rotational MTS(v) is a collection of starter blocks of a 1-rotational MTS(v) is a collection of starter blocks of a 1-rotational MTS(v) is a collection of starter blocks of a 1-rotational MTS(v) is a collection of starter blocks of a 1-rotational MTS(v) is a collection of starter blocks of a 1-rotational MTS(v) is a collection of starter blocks of a 1-rotational MTS(v) is a collection of starter blocks of a 1-rotational MTS(v) is a collection of blocks which are taken exactly one from each orbit.

Applying Heffter's [4] two so-called *difference problems* (see [2] for a detailed description), a 1-rotational MTS(v) for $v \equiv 0 \pmod{3}$ is equivalent to a partitioning of the set $\{1, 2, \dots, v-2\} \setminus \{k\}$ for some $1 \leq k \leq v-2$ into difference triples; here, a difference triple is an ordered triple (x, y, z) for which $x+y+z \equiv 0 \pmod{v-1}$. When $v \equiv 1 \pmod{3}$, a 1-rotational MTS(v) is equivalent to a partitioning of $\{1, 2, \dots, v-2\} \setminus \{k, t\}$ for some $1 \leq k \leq v-2$, $t = \frac{v-1}{3}$ or $\frac{2(v-1)}{3}$ and $t \neq k$ into difference triples. These simple observations enable us to prove the following necessary condition.

LEMMA 2.1. If there exists a 1-rotational MTS(v), then $v \equiv 1, 3$ or 4 (mod 6).

PROOF First of all, we have $v\equiv0$ or 1 (mod 3) and $v\neq6$, since this is the spectrum for MTS(v). In case $v\equiv0 \pmod{6}$ and $v\neq6$, the existence of a 1-rotational MTS(v) is equivalent to a partitioning of the set $\{1, 2, \dots, v-2\} \setminus \{k\}$ for some $1 \le k \le v-2$ into difference triples (x, y, z) for which $x+y+z\equiv0 \pmod{v-1}$. Since v-1 divides the sum of the differences in each difference triple, it divides the sum of all differences being partitioned into difference triples. Thus, v-1 divides the sum of the integers 1 through v-2 except exactly one integer, i.e. $\frac{(v-2)(v-1)}{2} - k\equiv0 \pmod{v-1}$ for some $1\le k\le v-2$, but there is no such an integer k. Hence there exists no 1-rotational MTS(v) for $v\equiv0 \pmod{6}$.

LEMMA 2.2. [3]. There exists no 1-rotational MTS(10).

LEMMA 2.3. If $v \equiv 4 \pmod{6}$ and $v \neq 10$, then there exists a 1-rotational MTS(v).

PROOF. Let v=6t+4 and $t\neq 1$. Then

 $\{(0,\infty,2t+1), (0,2t+1,4t+2)\},\$

 $\{(a, b, c), (a, c, b) | \{a, b, c\} \in C\}$

where $C \cup \{\{0, 2t+1, 4t+2\}\}\$ is a collection of starter triples of a cyclic STS (6t+3),

are a collection of starter blocks of a 1-rotational MTS(6t+4), $t \neq 1$.

LEMMA 2.4. If $v \equiv 7$ or 13 (mod 18), then there exists a 1-rotational MTS(v).

PROOF. Let v=6t+1 and $t\equiv 1$ or 2 (mcd 3). Then

 $\{(0,\infty,t), (0,4t,2t)\},\$

 $\{(0, 3r, 2t-3+6r) | r=1, 2, \dots, t\},\$

 $\{(0, 3r, 6r-4t) | r=t+1, t+2, \dots, 2t-1\}$ (t>1)

are a collection of starter blocks of a 1-rotational MTS(6t+1) where $t \equiv 1$ or 2 (mod 3).

LEMMA 2.5. If $v \equiv 1 \pmod{18}$, then there exists a 1-rotational MTS(v).

PROOF. Let v=6t+1 and $t\equiv 0 \pmod{3}$. Then

 $\{(\infty, 0, t), (0, 2t, 4t)\},\$

 $\{(0, 3t+1-r, r) | r=1, 2, \cdots, t\},\$

 $\{(0, r, 7t-r) | r=t+1, t+2, \dots, 2t-1\}$

are a collection of starter blocks of a 1-rotational MTS(6t+1) where $t \equiv 0 \pmod{3}$.

LEMMA 2.6. If $v \equiv 3$ or 9 (mod 24), then there exists a 1-rotational MTS(v).

PROOF. Let v=6t+3 and $t\equiv 0$ or 1 (mod 4), Then

 $\{(\infty, 0, 3t+1)\},$

 $\{(0, r, b_r+t), (0, b_r+t, r) | r=1, 2, \dots, t\}$

where $\{(a_r, b_r) | r=1, 2, \dots, t\}$ is an (A, t)-system,

are a collection of starter blocks of a 1-rotational MTS(6t+3) where $t\equiv 0$ or 1 (mod 4).

LEMMA 2.7. If $v \equiv 15$ or 21 (mod 24), then there exists a 1-rotational MTS(v).

PROOF. Let v=6t+3 and $t\equiv 2$ or 3 (mod 4). Then

 $\{\infty, 0, 3t+1\},\$

 $\{(0, r, 3t+1-r), (0, 5t+2-r, r) | r=1, 2, \dots, t\}$

are a collection of starter blocs of a 1-rotational MTS (6t+3) where $t\equiv 2$ or 3 (mod 4).

Summarizing, we have

THEOREM 2.8. A 1-rotational MTS(v) exists if and only if $v \equiv 1, 3$ or 4 (mod 6) and $v \neq 10$.

3. Concluding Remarks

Note that a 1-rotational MTS(v) exists for all admissible orders v which are the spectrum for the existence of a MTS(v), except for $v \equiv 0 \pmod{6}$ and v =10. If $v \equiv 0 \pmod{6}$ and $v \neq (6t+1)(6k-1)+1$, then v-1 is a prime number. Thus, for the orders $v \equiv 0 \pmod{6}$ and $v \neq (6t+1)(6k-1)+1$, only (v-1)-rotational MTS(v) are considered; clearly such systems exist as their existence trivially follows from the existence of MTS (since the (v-1)-rotational automorphism is exactly the identity automorphism). In addition, a 3-rotational MTS(10) exists. For example, $(\infty, 1, 0)$, $(\infty, 4, 3)$, $(\infty, 7, 6)$, (0, 1, 3), (3, 4, 6), (0, 6, 7), (0, 4, 8), (0, 8, 4), (0, 3, 6), and (0, 7, 5) with $\alpha = (\infty)$ (0 1 2) (3 4 5) (6 7 8) are a collection of starter blocks of a 3-rotational MTS(10). Therefore, the only unsettled problem for the existence of rotational MTS is: If v = (6t +1)(6k-1)+1, do there exist a (6t+1)-and a (6k-1)-rotational, respectively,?

> Sookmyung Women's University Seoul, Korea

REFERENCES

- C.J. Colbourn and M.J. Colbourn, Disjoint cyclic Mendelsohn triple systems, Ars Combin., 11(1981), 3-8.
- [2] M.J. Colbourn and R. Mathon, On cyclic Steiner 2-designs, Annals of Discrete Math., 7(1980), 215-253.
- [3] B. Ganter, R. Mathon and A. Rosa, A complete census of (10, 3, 2)-block designs and of Mendelsohn triple systems without repeated blocks, Proc. Seventh Manitoba Conference

on Numerical Math. and Computing, 1977, 383-398.

- [4] L. Heffter, Über Tripelsysteme, Math. Ann., 49(1897), 101-112.
- [5] N.S. Mendelsohn, A natural generalization of Steiner triple systems, Computers in Number Theory (A. Atkin and B. Birch, editors), Academic Press, London, 1971, 323 -338.
- [6] R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math., 6 (1939), 251-257.
- [7] A. Rosa, Posnámka o cyklických Steinerových systémoch trojic, Mat.-Fyz. Čas., 16 (1966), 285-290.