Abstract
Conversion of anaerobic mesophilic digestion to thermophilic range has been investigated using a synthetic sludge. When temperature was raised at a rate of 2, 1, and $0.5^{\circ}C$ per day with continuous feeding, a lower reaction rate was observed with a high rate of temperature change. Although methane fermentation ceased completely for an digesters at thermophilic temperature, acid fermentation continued. Methane fermentation was never achieved even with neutralization during 6 months of resting. The methane formers were completely inactivated by the temperature shock and accumulation of volatile acids due to continuous feeding, while the acid formers lost biological activity quickly, but gradually acclimated to a high temperature. When temperature was raised without feeding, successful thermophilic digestion was achieved with 1 day of resting at thermophilic temperature at a rate of $1^{\circ}C$ per day, and also achieved with 20 days of resting at a direct increase. Conversion to a thermophilic range is easily achieved with resting. A short period of resting is required at a low rate of temperature increase, while a long period of resting enough to balance methane formers with acid fermers makes a conversion possile when temperature is raised at a high rate. Soured thermophilic digesters were recovered after seeding of mesophilic sludges, and sludge seeding could be a good method of start-up, conversion, or recovery of a thermophilic digester. Significant amount of thermophiles seemed to be present in the mesophilic digesters.
인공(人工)슬러지를 이용하여 혐기성중온소화(嫌氣性中溫消和)의 고온소화(高溫消化)에로의 전환방법(轉換方法)에 대하여 연구하였다. 부하(負荷)를 계속하며 온도증가율(溫度增加率) 2, 1 및 $0.5^{\circ}C/day$로 온도를 상승시킨 결과, 온도증가율(溫度增加率) 이 클수록 메탄발효(醱酵)가 급속하게 악화되었으며, 세경우 모두 고온(高溫)에 도달하였을 때는 메탄발효(醱酵)가 중지되고 산발효(酸醱酵)만이 일어났다. 이러한 산발효상태(酸醱酵狀態)에서 부하(負荷)를 끊고 중화(中和)를 행한 후 6개월간(個月間)의 휴지기간중(休止期間中)에도 메탄발효(醱酵)는 이루어지지 않았다. 이로부터 메탄생성균(生成菌) 온도충격(溫度衝擊)의 크기에 비례하여 급속하게 활성(活性)을 잃는 반면 산생성균(酸生性菌)은 영향을 덜 받아 고온하(高溫下)에서 적응될 수 있다고 판단할 수 있다. 반면에 무부하상태하(無負荷狀態下)에서 온도(溫度)를 상승시켰을 때, 정상적(正常的)인 고온소화(高溫消化)가, 온도증가율(溫度增加率) $1^{\circ}C/day$의 경우 고온(高溫)에 도달한 후 1일(日)의 휴지기간(休止期間)으로도 가능하였고 일시(一時)에 상승시킨 경우도 20일간(日間) 휴지기간(休止期間)으로 가능하였다. 따라서 고온(高溫)에로의 전환(轉換)은 무부하상태하(無負荷狀態下)에서 용이(容易)함을 알 수 있는 동시에, 온도증가율(溫度增加率)이 작은 경우 고온(高溫)도달 후 짧은 휴지기간(休止期間)으로 전환(轉換)이 가능하며, 온도증가율(溫度增加率)이 매우 커서 급격한 온도충격(溫度衝擊)이 발생하는 경우에도 메탄생성균(生成菌)이 산생성균(酸生性菌)과 균형을 이루기에 충분한 휴지기간(休止期間)이 주어지면 고온소화(高溫消化)에로의 전환(轉換)이 가능함을 알 수 있다. 한편 산발효상태(酸醱酵狀態)의 고온소화조(高溫消化槽)에 중온소화(中溫消化)슬러지를 식종(植種)한 결과 신속하게 정상정(正常的)인 고온소화(高溫消化)가 이루어질 수 있었다. 따라서 중온소화(中溫消化)슬러지에 의한 식종(植種)은 고온소화(高溫消化)의 초기운전시(初期運轉時)나 정상정(正常的)인 소화(消化)의 정지시(停止時) 매우 유효(有效)한 전환(轉換) 및 회복방법(回復方法)이 될 수 있을 것이다. 또한 온도상승(溫度上昇) 및 중온(中溫)슬러지식종(植種)에 의한 정상정(正常的)인 고온소화결과(高溫消和結果)로부터 중온하(中溫下)에서도 상당량(相當量)의 고온균(高溫菌)이 존재하고 있음을 알 수 있다.