On Completely Reducible Modules

by Kyung Ho Kim Kyung Hee University, Seoul, Korea

1. Introduction and Preliminaries

In this paper we will investigate some properties of completely reducible module. First of all, we recall the notion of completely reducible modules.

Definition 1.1. A left R-module M is said to be completely reducible if every submodule s a direct summand.

Lemma 1.2. A submodule of a completely reducible module is completely reducible.

Definition 1.3. Let R be a ring and $\{M_i | i \in I\}$ a family of R-modules. The complete lirect sum $\sum_{i} M_i$ consists of the functions m defined on I with values $m(i) \in M_i$.

Definition 1.4. Let R be a ring with identity. An R-module U is homogeneous of type I if U is the direct sum of a family $\{M_{\lambda} | \lambda \in \Lambda\}$ of irreducible R-submodules M_{λ} , each somorphic to the irreducible module I.

2. Main Theorem

Theorem 1.5. An artinian ring identity is semisimple if and only if each unital R-modules is completely reducible.

Proof. Since R is artinian, this entails showing that there exist no nonzero nilpotent left ideals. By hypothesis, given a left ideal $L \neq (0)$, there exists L' such that $R = L \oplus L'$. In particular 1 = e + e' with $0 \neq e \in L$. It follows that $e = e^2 + ee'$ and hence $e - e^2 \in L' \cap L = (0)$. Therefore $e = e^2$. Since $0 \neq e = e^2 \in L$. L is not nilpotent.

Theorem 1.6. Let 1 R and Let M be a unital, completely reducible R-module K its centralizer. If $m \neq 0$ belongs to an irreducible submodule U of M, mK is an irreducible K-module.

Proof. Let $0 \neq m' \in mK$. Then there exists $\alpha \in K$ such that $m' = m\alpha$. The mapping $u \longrightarrow u\alpha$ of U onto $U\alpha$ is an isomorphism. This may be extended to an automorphism β of M. Therefore $m' = m\beta$ and hence $m'\beta^{-1} = m$ showing that m'K = mK.

Theorem 1.7. The following three statements about an R-module M are equivalent

- (1) M is completely reducible.
- (2) M is a direct sum of irreducible submodules.
- (3) M is a sum of irreducible submodules.

Proof. (1) implies (2).

Let $n \in \mathbb{N}$, $n \neq 0$ and N is submodule of M. Consider the collection of all submodules

18 K. H. Kim

N' of N such that $n \notin N'$. Since N is a submodule of M, we know that N is completely reducible by lemma 1.1, and so $N = N_0 \oplus N_1$ for some submodule N_1 of N and we may show that N_1 is irreducible. For otherwise N_1 would contain a proper nonzero submodule N_2 , and then $N_1 = N_2 \neq N_3$ for some nonzero submodule N_3 of N_1 . But this gives $N = N_0 \oplus N_2 \oplus N_3$ and surely either $n \notin N_0 + N_2$ or $n \notin N_0 + N_3$, since $(N_0 + N_2) \cap (N_0 + N_3) = N_0$. This shows that N_1 is irreducible.

(2) implies (3)

The fact that (2) implies (3) is immediate.

(3) implies (1).

Let N be a submodule of M, N' be a submodule maximal with respect to the property that $N' \cap N = (0)$. We wish to prove that $N \oplus N' = M$ for by construction. The sum N+N is direct. Suppose the result is false. Then there exists m in M such that $m \notin N + N'$. By (3), $m = m_1 + \dots + m_s$ where the $\{m_i\}$ belong to irreducible submodules $\{M_i\}$. Since $m \notin N+N'$, some $m_i \notin N+N'$, and there exists an irreducible submodule M_i such that $M_i \not\subset N+N'$. Because M_i is irreducible we have $M_i \cap (N+N') = (0)$ and hence $N' + M_i$ is a submodule properly containing N' whose intersection with N is zero. This contradicts the maximality of N' and we must have N+N'=M.

Corollary 1.8. Let the R-module M satisfy either chain condition. Then M is complete ly reducible if and only if M is a direct sum of a finite set of irreducible submodules.

Theorm 1.9. Let G be a finite group and K a field whose characteristic does not divide [G:1]. Then every left KG-module is completely reducible.

Proof. see[15 p. 88]

Reference

- 1. Behrens, Ring theory, Academic, 1972.
- 2. Pierce, Associative Algebra, Springer Verlag, 1980.
- 3. Snapper, Completely irreducible modules, can, j. math. (1949), 125~152.