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On Completely Reducible Modules

by Kyung Ho Kim
Kyung Hee University, Seoul, Korea

1. Introduction and Preliminaries

In this paper we will investigate some properties of completely reducible module. First
f all, we recall the notion of completely reducible modules.

Definition 1.1. A left R-module M is said to be completely reducible if every submodule
s a direct summand.

Lemma 1.2. A submodule of a completely reducible module is completely reducible.

Definition 1.3. Let R be a ring and {M.|/€/} a family of R-modules. The complete
lirect sum 2:M; consists of the functions m defined on I with values m(i) EM;.

Definition 1.4. Let R be a ring with identity. An R-module U is homogeneous of type
[ if U is the direct sum of a family {Mi|A€ 4} of irreducible R-submodules M., each
somorphic to the irreducible module I.

2. Main Theorem

Theorem 1.5. Awn artinian ring identity is semisimple if and only if each wunital R-
modules i1s completely reducible.

Proof. Since R is artinian, this entails showing that there exist no nonzero nilpotent
left ideals. By hypothesis, given a left ideal L+ ((), there exists L’ such that
R=L® L’ In particular 1=e+e’ with 0+e€SL. It follows that e=e*+ee’ and hence
e—e*eL’'NL=1(Q). Therefore e=¢&. Since 0+e=e*SL. L is not nilpotent.

Theorem 1.6. Lei 1 R and Let M be a unital, completely reducible R-module K its
centralizer. If m+ (O belongs to an irreducible submodule U of M, mK s an irreduc-
ible K-module.

Proof. Let 0+m'EmK. Then there exists a€ K such that m’=ma. The mapping
u— ua of U onto Uea is an isomorphism. This may be extended to an automorphism A
of M. Therefore m'=mfB and hence m'B'=m showing that m'K=mkK.

Theorem 1.7. The following three statements about an R-module M are equivalent

(1) M is completely reducible.

(20 M is a divect sum of irrveducible submodules.

(3) M is a sum of trreducible submodules.

Proof. (1) implies (2) .

Let &N, n+(0 and N is submodule of M. Consider the collection of all submodules
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N’ of N such that #€&N’. Since N is a submodule of M, we know that N is complete:
ly reducible by lemma 1.1, and so N=N;® N, for some submodule N of N and wi
may show that N, is irreducible. For otherwise N: would contain a proper nonzero sut
module N:, and then Ni=N;+N; for some nonzero submodule N: of N,. But this give
N=N,®N:® Ns and surely either #»§ No + N: or ngt Ny + Ns, since (No + N2)N(No+ N3)= N,
This shows that N, is irreducible.

{2) implies (3)

The fact that (2) implies (3) is immediate.

(3) implies (1) .

Let N be a submodule of M, N’ be a submodule maximal with respect to the propert:
that NNN=(0). We wish to prove that N® N'=M for by construction. The sum N+ N
is direct. Suppose the result is false. Then there exists m in M such that m&N +N'.
By (3), m=mi+-+ms where the {m.} belong to irreducible submodules {M;}.

Since m&EN+N’, some m: N+ N, and there exists an irreducible submodule M: sucl
that M;E N+ N'. Because M. is irreducible we have M;N(N+N’)=(0) and hence
N+ M;:is a submodule. properly containing N° whose intersection with N is zero.

This contradicts the maximality of N' and we must have N+ N'=M.

Corollary 1.8. Let the R-module M satisfy either chain condition. Then M is complete
ly reducible if and only if M is a direct sum of a finite set of irreducible submodules.

Theorm 1.9. Let G be a finite group and K a field whose characteristic does not
divide [G :1]. Then every left KG-module is completely reducible.

Proof. see[15 p. 88]
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