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I. Introduction

Let D be an integral domain, let 2 denote the set of primary ideals, and let ¢ denote
he set of valuation ideals of D. The object of this paper is to investigate the significance
f the relationships ¥ &2, 25 v, and Our point of departure was the observation in that
f D is a Dedekind domain, then 2=10.

. Preliminary results on valuation ideals,

Definition 2. 1. An ideal A of a domain D is called a valuation ideal if there exists a
raluation ring DyE D and an ideal Ay of D, such that A,ND=A

Definition 2. 2. If A is ideal of D and if S is the set of all nontrival valuations of
lie quotient field K of D which are non-negative on D, then A'=Nyes A+ Dy is called
he complition of A. If A=A’ then A is called complete. D’=MNyes Dy is the integral
losure of D (8, p.15, Tleorem 6)

Proposition 2.3. Let D be a domain. If A is any ideal of D, denote by A’ the

ompletion of A and by A* the intersection of those valuation ideals of D which contain
\. Then

(1) A‘ND=A*

(2) (x)’=xD’ for any x € D.

(3) If (x)=(x)’ for some x€ED, xX0, then D=D’

(4) (x) = (x)* for all x€D if and only if D=D"

Definition 2. 4. An integral domain D is a Priifer domain if each nonzero finitely ge-
erated ideal of R is invertible.

Theorem 2.5. If every ideal of D is an intersection of primary ideals and if every
rimary ideal is a valuation ideal, then D is Priifer.

Il. Main Theorem,

Theorem 3.1. U2 if and only if every proper prime ideal of D is maximal.

Proof. Suppose every prime ideal of D is maximal, and let A be a valuation. Then there
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exists a valuation ring Dy2D and an ideal Ay of D such that A,ND=A. If P is the cen-
ter of Dy on D, then DED,C D, and D is a one dimensional quasi-local ring. Therefore

AyND,=A" is primary; and since A‘ND=A, A is also primary. Conversely, assume &
2, and suppose there exist prime ideals P, P’ of D such that 0C PC PCD. By (6,p.37),
there exists a valuation ring Dy having prime ideals P,, P; which lie over P, P’ respectively.
Clicose xE P/, x& P and y%0 in P, and let A= (XY) D,ND. Then A is a valuation ideal

and AS P. Claim; A4 is not primary. For if A is primary, xy€ A and x&§ P implies y€ A.

But then y=rxy for some r&D,, and hence 1 = rx€ Pj, a contradiction.

Lemma 3.2. Let M be a prime ideal of a domain D, and suppose there exists a prime
ideal PC M such that there is no prime ideal P, whth PC P, CM.
then P is the intersection of the M-primary ideals of D which contain P.

Theorem 3.3. Let D be a quasi-local domain, and suppose for any nonzero prime
ideal P of D there exists a prime ideal N(P)C P such that if P, is prime idealC P,
then P, S N(P). Then D satisfies the a.c.c. for prime ideals and the prime ideals of
D are linearly ordered.

Proof. If P,CP,S- is anascending chain of prime ideals of D, then U=U P, is also
prime, so if U¥ P, for all i, thne P.EN(U) for all i; and we would have U=U P,E N(U
C U, a contradiction. Threrefore, D satisfies the a.c.c for prime ldeals. Now suppose
there exist prime ldeals P,, P, of D such that P, %P, and P,%P,. Since D has the a.
c.c. for prime ldeals, there exists a prime ideal M, maximal with respect to the properties
P.cM, P.&M, Since P,$M M is not the maximal ideal of D and there exist a prime ide
M, DOM. If {M.} is the set of all such prime ideals, then ME= N M, since P, M, and P,
M. Therefore, by Zorns lemma, there is a prime ideal M, minimal with respect to the
property that M, DM. Therefore, MEN(M,)C M, implies M=N(M,). But then P,CM,
means P,SN(M,) =M, a contradiction to the choice of M.

Corollary 3.4. Let D be a quasi-local domain such that D satisfies the a.c.c. for
prime ideals If 25 U, then the prime ideals of D are linearly ordered.

Lemma 3.5. Let D be a quasi-local domain which satisfies the for prime ideals, am
suppose 2= V. Then D is integrally closed.

Theorem 3.6. Let D be a domain which satisfies the a.c.c. for prime ideals If 2
S v, then D is a Priifer domain.

Proof. It is sufficient to see D, is a valuation ring for any prime ideal P of D.
Therefore we may assume that D is quasi-local, and D is integrally closed. Suppose the
there exists nonzero x, y€ D such that x/y and y/x& D. x,y are then nonunits of D, s
the fact that the prime ideals of D are ordered implies V (x, y) is prime. Consider the
the set of all prime ideals of D which are of the form for such x, . By the a.c.c, co
tains 2 maximal element P and suppose x,y are the elements of the above type such th
P=V{x,y). (), %*): D, is then primary and hence a valuation ideal. Therefore xy€ (x’
y?) » D,. We may assume that x/yE€ D,. Then x/y=r/s,r,s€D, s&P. But this mea
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r/s, s/r& D, and s& P implies V(r, s) DP, a contradiction to the choice of P.

Corollary 3. 7. A noetherian domain D has the property 2= UV if and only if D is
Dedekind domain.

Proof. D is Dedekind domain if and only if D is a noetherian Priufer domain. now
apply 3.6.

Corollary 3.8. Let D be a noetherian domain and let P be a prime ideal of D such
that every P-primary ideal is valuation ideal. Then P is minimal prime of D and P,

is rank 1, discrete valuation ring.
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