Primary Ideals and Valuation ideals.

by Kim Kyung Ho and Lee Hyun Bog

Kyung Hee University, and Chung Nam National University, Korea.

I. Introduction

Let D be an integral domain, let 2 denote the set of primary ideals, and let v denote the set of valuation ideals of D. The object of this paper is to investigate the significance of the relationships $v \subseteq 2$, $z \subseteq v$, and Our point of departure was the observation in that $v \subseteq 2$ is a Dedekind domain, then $v \subseteq 2$.

II. Preliminary results on valuation ideals.

Definition 2.1. An ideal A of a domain D is called a valuation ideal if there exists a valuation ring $D_v \subseteq D$ and an ideal A_v of D_v such that $A_v \cap D = A$

Definition 2.2. If A is ideal of D and if S is the set of all nontrival valuations of the quotient field K of D which are non-negative on D, then $A' = \bigcap_{v \in s} A \cdot D_v$ is called the complition of A. If A = A', then A is called complete. $D' = \bigcap_{v \in s} D_v$ is the integral closure of D (8, p.15, Theorem 6)

Proposition 2.3. Let D be a domain. If A is any ideal of D, denote by A' the ompletion of A and by A^* the intersection of those valuation ideals of D which contain A. Then

- (1) $A' \cap D = A^*$
- (2) (x)' = xD' for any $x \in D$.
- (3) If (x) = (x)' for some $x \in D$, $x \neq 0$, then D = D'.
- (4) $(x) = (x) * for all <math>x \in D$ if and only if D = D'.

Definition 2.4. An integral domain D is a Prüfer domain if each nonzero finitely gerated ideal of R is invertible.

Theorem 2.5. If every ideal of D is an intersection of primary ideals and if every rimary ideal is a valuation ideal, then D is Prüfer.

III. Main Theorem.

Theorem 3.1. $v \subseteq 2$ if and only if every proper prime ideal of D is maximal. Proof. Suppose every prime ideal of D is maximal, and let A be a valuation. Then there exists a valuation ring $D_v \supseteq D$ and an ideal A_v of D such that $A_v \cap D = A$. If P is the center of D_v on D, then $D \subseteq D_v \subset D_v$ and D is a one dimensional quasi-local ring. Therefore $A_v \cap D_\rho = A'$ is primary; and since $A' \cap D = A$, A is also primary. Conversely, assume \subseteq 2, and suppose there exist prime ideals P, P' of D such that $0 \subset P \subset P \subset D$. By (6, p. 37), there exists a valuation ring D_v having prime ideals P_v , P'_v which lie over P, P' respectively. Choose $x \in P'$, $x \notin P$ and $y \neq 0$ in P, and let A = (XY) $D_v \cap D$. Then A is a valuation ideal and $A \subseteq P$. Claim; A is not primary. For if A is primary, $xy \in A$ and $x \notin P$ implies $y \in A$. But then y = rxy for some $r \in D_v$, and hence $1 = rx \in P'_v$, a contradiction.

Lemma 3.2. Let M be a prime ideal of a domain D, and suppose there exists a prime ideal $P \subset M$ such that there is no prime ideal P, which $P \subset P$, CM. then P is the intersection of the M-primary ideals of D which contain P.

Theorem 3.3. Let D be a quasi-local domain, and suppose for any nonzero prime ideal P of D there exists a prime ideal $N(P) \subset P$ such that if P, is prime ideal $\subset P$, then $P \subseteq N(P)$. Then D satisfies the a.c. c. for prime ideals and the prime ideals of D are linearly ordered.

Proof. If $P_1 \subset P_2 \subseteq \cdots$ is an ascending chain of prime ideals of D, then $U = \bigcup P_i$ is also prime, so if $U \not= P_i$ for all i, then $P_i \subseteq N(U)$ for all i; and we would have $U = \bigcup P_i \subseteq N(U) \subset U$, a contradiction. Therefore, D satisfies the a.c. c for prime ideals. Now suppose there exist prime ideals P_1, P_2 of D such that $P_1 \not\subseteq P_2$ and $P_2 \not\subseteq P_3$. Since D has the a. c. c. for prime ideals, there exists a prime ideal M, maximal with respect to the properties $P_1 \subseteq M$, $P_2 \not\subseteq M$, Since $P_2 \not\subseteq M$, M is not the maximal ideal of D and there exist a prime ide $M_0 \supset M$. If $M_0 \supset M$ is the set of all such prime ideals, then $M \not= \bigcap M_0$ since $P_2 \subseteq M_0$ and $P_2 \subseteq M$. Therefore, by Zorns lemma, there is a prime ideal M_0 minimal with respect to the property that $M_0 \supset M$. Therefore, $M \subseteq N(M_0) \subset M_0$ implies $M = N(M_0)$. But then $P_2 \subset M_0$ means $P_2 \subseteq N(M_0) = M$, a contradiction to the choice of M.

Corollary 3.4. Let D be a quasi-local domain such that D satisfies the a.c.c. for prime ideals If $2 \subseteq v$, then the prime ideals of D are linearly ordered.

Lemma 3.5. Let D be a quasi-local domain which satisfies the for prime ideals, and suppose $2 \subseteq v$. Then D is integrally closed.

Theorem 3. 6. Let D be a domain which satisfies the a.c.c. for prime ideals If $2 \equiv v$, then D is a Prüfer domain.

Proof. It is sufficient to see D_ρ is a valuation ring for any prime ideal P of D. Therefore we may assume that D is quasi-local, and D is integrally closed. Suppose the there exists nonzero $x, y \in D$ such that x/y and $y/x \notin D$. x, y are then nonunits of D, x the fact that the prime ideals of D are ordered implies V(x, y) is prime. Consider the the set of all prime ideals of D which are of the form for such x, y. By the a.c. C, contains a maximal element C and suppose C, C are the elements of the above type such the C are C of the primary and hence a valuation ideal. Therefore C of C is then primary and hence a valuation ideal. Therefore C of C is the C of C of C of C. We may assume that C of C

r/s, $s/r \notin D$, and $s \notin P$ implies $V(r, s) \supset P$, a contradiction to the choice of P.

Corollary 3. 7. A noetherian domain D has the property $2 \subseteq v$ if and only if D is Dedekind domain.

Proof. D is Dedekind domain if and only if D is a noetherian Prüfer domain. now apply 3.6.

Corollary 3.8. Let D be a noetherian domain and let P be a prime ideal of D such that every P-primary ideal is valuation ideal. Then P is minimal prime of D and P_{ρ} is rank 1, discrete valuation ring.

References

- [1] Larsen, McCarthy. Multiplicative theory of ideals, Academic Press.
- [2] R. Gilmer, Integral domains which are almost Dedekind, Proc. Amer. Math soc 15 (1964), 313-317.
- [3] O Zariski and P. Samuel, commutative algebra Vol 1, 2, Van Nostrand, Princeton N, J 1958.