Stability of Closed set in Flow

by Yun-Hoy Gu and Gwang-Hui Kim Chung Nam National University, DeaJeon Korea

In [1], the following Theorem shows the connection between stability and Lyapunov func-

Theorem 1. A closed set M is stable if and only if there exists a function $\varphi(x)$ fined on X with the following properties:

 $\varphi(x)$ if and only if $x \in M$,

For every $\varepsilon > 0$, there is a $\delta > 0$ such that $\varphi(x) \ge \delta$ whenever $\rho(x, M) \ge \varepsilon$; also for y sequence (x_n) , $\varphi(x_n) \to 0$ whenever $x_n \to x \in M$,

 $\varphi(xt) \leq \varphi(x)$ for all $x \in X$, $t \geq 0$.

Here, in general, a function $\varphi(x)$ need not be continuous. Such an example is given in]. However, in this paper, even though a function $\varphi(x)$ is continuous, we will prove it a closed set M is stable if and only if there exists a continuous function $\varphi\colon X\to R^+$ the chart (1) for any $x\in X$, $\varphi(x)=0$ if and only if $x\in M$, (2) for any $x\in X$ and $t\in R^+$, $xt)\leq \varphi(x)$.

Here, X and R^+ mean an arbitrary metric space and the set of non-negative reals, spectively. A closed set M of X is stable if for each $\varepsilon > 0$ and $x \in M$, there is a $\delta = \delta$ $\varepsilon > 0$ such that $S(x, \delta) R^+ \subset S(M, \varepsilon)$. A point $x \in X$ is positively Lyapunov stable if each $\varepsilon > 0$, there is a $\delta > 0$ such that $\rho(x, y) < \delta$ implies $\rho(xt, yt) < \varepsilon$ for $t \in R^+$. If any point of X is positively Lyapunov stable, X is called positively Lyapunov stable.

Theorem 2. Let X be positively Lyapunov stable. Then a subset M of X is closed l positively invariant if and only if there exists a continuous function $\varphi \colon X \to R^t$ that (1) for each $x \in X$, $\varphi(x) = 0$ if and only if $x \in M$

(2) for each $x \in X$ and $t \in R^+$, $\varphi(xt) \leq \varphi(x)$.

Proof. (1) Sufficiency. Let $x \in M$. Then there exists a sequence (x_n) in M such that $\to x$. Since a function φ is continuous, $\varphi(x_n) \to \varphi(x)$. By the assumption, $\varphi(x_n) = 0$. arly, $\varphi(x) = 0$. Also, $x \in M$. Hence M is closed.

To see that M is positively invariant, let $x \in M$ and $t \in R^+$. Then $\varphi(x) = 0$. Since $0 \le \varphi(x)$, $\varphi(xt) = 0$. Thus $xt \in M$. As $t \in R^+$ was arbitrary, M is positively invariant.

2) Necessity. Let M be positively invariant. We define the function $\varphi: X \to R^+$ by

ting
$$\varphi(x) = \sup_{t \in R^+} \frac{\rho(xt, M)}{1 + \rho(xt, M)}$$
. Then $\varphi(x)$ is defined on X .

Let $x \in M$. For any $t \in R^+$, $xt \in M$. Thus $\rho(xt, M) = 0$. Consequently, $\frac{\rho(xt, M)}{1 + \rho(xt, M)} = 0$.

This shows that $\varphi(x) = \sup_{t \in \mathbb{R}^+} \frac{\rho(xt, M)}{1 + \rho(xt, M)} = 0$. Assume that $\varphi(x) = 0$, for any $x \in X$.

Let
$$x \notin M$$
. Then $\rho(x, M) > 0$. Here, $\varphi(x) = \sup_{t \in R^+} \frac{\rho(xt, M)}{1 + \rho(xt, M)} \ge \frac{\rho(x, M)}{1 + \rho(x, M)} > 0$.

This contradicts to the fact that $\varphi(x) = 0$. Therefore, $x \in M$.

We claim that $\varphi(xt) \leq \varphi(x)$, for any $x \in X$ and $t \in R^+$. Now,

$$\varphi\left(xt\right) = \sup_{s \in R^{+}} \frac{\rho\left(xt\left(s\right), M\right)}{1 + \rho\left(xt\left(s\right), M\right)} = \sup_{s \in R^{+}} \frac{\rho\left(x\left(t + s\right), M\right)}{1 + \rho\left(x\left(t + s\right), M\right)} = \sup_{s \in \left(t, +\infty\right)} \frac{\rho\left(xs, M\right)}{1 + \rho\left(xs, M\right)}$$

$$\leq \sup_{s \in R^+} \frac{\rho(xs, M)}{1 + \rho(xs, M)} = \varphi(x)$$
. Hence $\varphi(xt) \leq \varphi(x)$.

In order to prove the continuity of $\varphi: X \to R^+$, let $x \in X$. Since X is positively Lyapunov stable, for any $\varepsilon > 0$, there exists $a\delta > 0$ such that $\rho(x, y) < \delta$ implies $\rho(xt, yt) < \varepsilon$, for all $t \in R^+$. For any $z \in M$, $\rho(xt, M) \le \rho(xt, z) \le \rho(xt, yt) + \rho(yt, z)$.

Then $\rho(xt, M) - \rho(xy, yt) \le \rho(yt, z)$. Also, $\rho(xt, M) - \rho(xt, yt) \le \rho(yt, M)$. Thus

$$\rho(xt, M) \leq \rho(yt, M) + \rho(xt, yt) < \rho(yt, M) + \varepsilon. \text{ Here, } \varphi(x) = \frac{\rho(xt, M)}{1 + \rho(xt, M)} < \frac{\rho(yt, M) + \varepsilon}{1 + \rho(yt, M) + \varepsilon}$$

$$<\frac{\rho(yt,M)+\varepsilon}{1+\rho(yt,M)}<\frac{\rho(yt,M)}{1+\rho(yt,M)}+\varepsilon\leq\varphi(y)+\varepsilon.$$

Therefore, $\varphi(x) \le \varphi(y) + \epsilon$. Similarly, $\varphi(y) \le \varphi(x) + \epsilon$. This implies that $|\varphi(y) - \varphi(x)| \le \epsilon$. Hence the function $\varphi: x \to R^+$ is continuous.

Theorem 3. Let X be positively Lyapunov stable and let M be a closed subset of X. Then M is positively invariant if and only if M is stable.

Proof. Let M be positively invariant. Let $x \in M$. Then $xt \in M$. In view of positively Lyapunov stability of X, for any $\epsilon > 0$, there exists $\alpha \delta > 0$ such that $\rho(x, y) < \delta$ implies $\rho(xt, yt) < \epsilon$, for any $x \in M$ and $t \in R^+$. Now, $\rho(yt, M) \le \varphi(yt, xt) < \epsilon$. Clearly, $yt \in S(M, \epsilon)$. Thus $S(x, \delta) R^+ \subset S(M, \epsilon)$. This means that M is stable.

Conversely, let M be stable. Let $x \in M$ and $t \in R^+$. If $xt \notin M$, $\rho(xt, M) = \varepsilon > 0$. Since M is stable, $xt \in S(M, \varepsilon)$. Then $\rho(xt, M) < \varepsilon$. This is a contradiction. Hence $xt \in M$. Consequently, M is positively invariant. This completes the proof.

Remark. From Theorem2 and Theorem 3, a closed set M of X is stable if and only if there exists a continuous function $\varphi \colon X \to R^+$ such that (1) for any $x \in X$, $\varphi(x) = 0$ if and only if $x \in M$, (2) for any $x \in X$ and $t \in R^+$, $\varphi(xt) \leq \varphi(xt)$.

References

- [1] N. P. Bhatia and G. P. Szego, Stability Theory of Dynamical Systems, Springer-Verlag, New York Heidelberg Berlin, 1970.
- [2] K. S. Sibirsky, Introduction to Topological Dynamics, Noordorff, Leyden, Netherlands, 1975.