On The Final Convergence Structure

by Jung Wan Nam, Bae Hun Park and Bu Young Lee

Gyeong Sang National University, Korea National University of Education, and Dong-A University, Korea.

I. Introduction

In this paper we introduce a notion of final convergence structure and investigate some properties. For notions, not given here, the reader is asked to refer to [1], [2], [3], [5] and [8]. For a set X, F(X) denotes the set of all filters on X and P(X) the set of all subsets of X. For each $x \in X$, x is the principal ultrafilter containing $\{x\}$.

A convergence structure on X is a map q from F(X) into P(X) satisfying the following conditions:

- (1) for each $x \in X$, $x \in q(x)$;
- (2) for $F, G \in F(X)$, if $F \subset G$, then $q(F) \subset q(G)$;
- (3) if $x \in q(F)$, then $x \in q(F \cap x)$.

The pair (X,q) is called a convergence space. If $x \in q(F)$, we say that F q-converges to x. The filter $V_q(x)$ obtained by intersecting all filters which q-converges to x is called the q-neighborhood filter at x. If $V_q(x)$ q-converges to x for each $x \in X$, then q is called a pretopology, and (X,q) a pretopological space. Pretopology q is called a topology if for each $x \in X$, the filter $V_q(x)$ has a filterbase $B_q(x) \subset V_q(x)$ with the following condition:

 $y \in G(x) \in B_q(x)$ implies $G(x) \in B_q(y)$.

II. Preliminaries

For a convergence sturcture q to be a limitierung, it is necessary and sufficient that the following condition be satisfied:

 $x \in q(F)$ and $x \in q(G)$ implies $x \in q(F \cap G)$.

For q to be a pseudo-topology, the following additional condition is necessary and sufficient:

if F' q-converges to s for all ultrafilters F' finer than F, then F q-converges to x.

A convergence structure q is said to be a weakli uniformizable if there exists a set Q of completely regular topologies such that $q = inf_c Q$.

For any convergence space (X, q), let $(\rho X, \rho(q))$ be the convergence space defined on the same underlying sets as follows:

 $F \rho(q)$ -converges to x if and only if G q-converges to x for each ultrafilter G finer than F.

Then the space $(\rho X, \rho(q))$ is the finest pseudo-topological space coarser than X, and it is called the pseudo-topological modification of X. Note that X and ρX have the same ultrafilter convergence. A convergence space (X, q) is said to be an almost pseudo-topological if $q(F) = \rho(q)(F)$ for all ultrafilter F on X, i. e. X and ρX have the same ultrafilter convergence. Convergence space (X, q) and (Y, p) are said to be a pseudo-topologically coherent if $\rho(X \times Y) = \rho X \times \rho Y$.

Let f be a map from a convergence space (X,q) onto a convergence space (Y,p). If $F \in F(X)$, then f(F) will denote the filter on Y generated by $\{f(F) | F \in F\}$. f is said to be continuous at a point $x \in X$ if for any filter F q-converges to x, the filter f(F) p-converges to f(x). If f is continuous at every point $x \in X$, then f is said to be continuous. The mapping f is called a convergence quotient hap if p is the finest convergence structure on f relative to which f is continuous.

Theorem 2.1. ([1]) Let (X,q) be a convergence space. $\pi(q)$ denoted by: $F \pi(q)$ -converges to x if and only if $F \subset Vq(x)$ for each $x \in X$. Then $\pi(q)$ is the finest pretopology coarser than q.

Theorem 2.2. ([4]) The following statements about f are equivalent:

- (1) f is a convergence quotient map;
- (2) A filter F p-converges to y in Y if and only if there is x in $f^{-1}(y)$ and $G \in F(X)$ such that $F \ge f(G)$ and G q-converges to x.

Theorem 2.3. ([2]) A convergence structure q is weakly uniformizable if and only if F q-converges to x whenever $x \in \cap F$ and $q(F) \neq d$

Let (X,q) be a convergence space. We may associate with q the set function I_q defined for a given A X by

$$I_{q}(A) = \{x \in A \mid A \in V_{q}(x)\}.$$

Then the set $\{I_q(A) | A \subset X\}$ is a base for the topology $\psi(q)$ on X.

Theorem 2.4. ([2]) Let q be a weakly uniformizable convergence structure. If q is a limitierung, then $\pi(q)$ and $\phi(q)$ are weakly uniformizable.

Theorem 2.5. ([7]) Convergence space (X,q), (Y,p) are almost pseudo-topological if and only if the pair X, Y is pseudo-topological coherent.

III. Final convergence structure

Let X be a set, (X_{α}, q_{α}) be a convergence space for each $\alpha \in A$. f be a map from a convergence space (X_{α}, q_{α}) onto X. q is a map from F(X) into P(X) satisfying the following condition:

for each element x of X, $F \in F(X)$, F q-converges to x if and only if for each $\alpha \in \Lambda$, $f_{\alpha}^{-1}(F)$ q_{α} -converges to x_{α} for some $x_{\alpha} \in f_{\alpha}^{-1}(x)$. Then we obtain a convergence structure q on X that is said to be final convergence structure induced by the family $\{f_{\alpha} | \alpha \in \Lambda\}$.

Throughout this section, q mean final convergence structure on X induced by the family $\{f_{\alpha} | \alpha \in \Lambda\}$, where f_{α} is a map from convergence space (X_{α}, q_{α}) onto a set X for each $\alpha \in \Lambda$

The following facts can be easily verified.

Proposition 3.1. q is the finest of all convergence structure on X which allow very f_{α} to be continuous for each $\alpha \in \Lambda$.

Corollary 3.2. If s is final convergence structure induced by the family $\{f_a \mid a \in A\}$, when every f_a is convergence quotient map.

Proposition 3.3. A map f from the convergence space (X,q) onto a convergence space (X,p) is continuous if and only if $f \circ f_{\alpha}$ is continuous for each $\alpha \in \Lambda$.

Lemma 3.4. For each $a \in A$, $x_a \in f_a^{-1}(x)$

$$f_{\alpha}^{-1}(Vq(x)) \subset Vq_{\alpha}(x_{\alpha}).$$

Proof.
$$f_{a}^{-1}(Vq(x)) = f_{a}^{-1}(\cap \{F \in F(x) | x \in q(F)\})$$

 $= \cap \{f_{a}^{-1}(F) | F \in F(X), x \in q(F)\}$
 $= \cap \{f_{a}^{-1}(F) | F \in F(X), f_{a}^{-1}(x) \subset q_{a}(f_{a}^{-1}(F))\}$
 $\subset \cap \{G \in F(X_{a}) | x_{a} \in q_{a}(G)\}$
 $= Vq_{a}(x_{a}).$

Proposition 3. 5. Every convergence space of the family $\{(X_a, q_a) | a \in A\}$ is pretoological, then q is a pretopology.

Proof. Since $Vq_{\alpha}(x_{\alpha}) \subset f_{\alpha}^{-1}(Vq(x))$ for some $x_{\alpha} \in f_{\alpha}^{-1}(x)$ and q_{α} is a pretopology for ach $\alpha \in A$.

$$x_{\alpha} \in q_{\alpha}(Vq_{\alpha}(x_{\alpha})) \subset q_{\alpha}(f_{\alpha}^{-1}(Vq(x))).$$

hrrefore Vq(x) q-converges to x. i.e. q is a pretopology.

Proposition 3.6. If (X_a, q_a) is a limitierung space, f_a injective for each $a \in A$, then is a limitierung.

Proof. If F_i q-converges to x, i=1,2, then $f_{\alpha}^{-1}(F_i)$ q_{α} -converges to $f_{\alpha}^{-1}(x)$ for each $\in A$, i=1,2. Since q_{α} is a limitierum for each $\alpha \in A$ and

$$f_{\alpha}^{-1}(F_1) \cap f_{\alpha}^{-1}(F_2) = f_{\alpha}^{-1}(F_1 \cap F_2),$$

 $f_1^{-1}(F_1 \cap F_2)$ q_a-converges to $f_a^{-1}(x)$. Thus $F_1 \cap F_2$ q-converges to x. Hence q is limitierung. Proposition 3.7. Let $f: (S, r) \to (T, p)$ be a injective convergence quotient map. f r is limitierung, then p is limitierung.

Proof. Let F_i , $F_i \in F(T)$. If F_i p-converges to i = 1, 2. By theorem 2.2, there are $f_i \in F(S)$ such that $f(G_i) \leq F_i$ and G_i r-converges to $F^{-1}(i)$ i=1, 2. Since r is limitierung, $f_i \cap G_i$ r-converges to $f^{-1}(t)$. Since

$$f(G_1 \cap G_2) \subset f(G_1) \cap f(G_2) \subset F_1 \cap F_2$$

', $\cap F_{*}$ p-converges to t. Hence p is a limitierung.

Proposition 3.8. If (X_a, q_a) is a weakly uniformizable convergence space for each $\in A$, then q is a weakly uniformizable.

Proof. Let $x \in \cap F$ and $q(F) \neq \phi$ then F q-converges to some $x' \in X$. Hence $f_{\alpha}^{-1}(F)$ q_{α} -converges to $x'_{\alpha} \in f_{\alpha}^{-1}(x')$ for each $\alpha \in A$. Since $x \in \cap F$,

$$f_{\alpha}^{-1}(x) \subset f_{\alpha}^{-1}(\cap F) = \bigcap f_{\alpha}^{-1}(F)$$
.

ince q_a is a weakly uniformizable, $f_a^{-1}(F)$ q_a -converges to $x_a \in f_a^{-1}(x)$.

Thus F q-converges to x. By theorem 2.3, q is a weakly uniformizable.

Corollary 3.9. If q_a is a limitierung and weakly uniformizable for each $\alpha \in \Lambda$, then $\pi(q)$, $\psi(q)$ are weakly uniformizable.

hereafter, (X_{α}, q_{α}) means a compact convergence space such that for each, $F \in F(X_{\alpha}, q_{\alpha})$ is one-point set for each $\alpha \in \Lambda$.

Proposition 3.10. If (X_a, q_a) is a pseudo-topological space for each $a \in A$, then q is a pseudo-topology.

Proof. Let (X_{α}, q_{α}) be a pseudo-topological space for each $\alpha \in \Lambda$. Given a filter F on X, let F' q-converges to x for all ultrafilter F', finer than F, then $f_{\alpha}^{-1}(F')$ q_{α} -converges to $x_{\alpha} \in f_{\alpha}^{-1}(x)$ for each $\alpha \in \Lambda$. Since $f_{\alpha}^{-1}(F) \subset f_{\alpha}^{-1}(F')$, X_{α} is a compact and $\mathcal{C}q_{\alpha}(f_{\alpha}^{-1}(F)) = \{x_{\alpha}\}$, $f_{\alpha}^{-1}(F)$ q_{α} -converges to x_{α} for each $\alpha \in \Lambda$. By definition of final convergence structure, F q-converges to x. Therefore (X, q) is a pseudo-topological space.

Lemma 3.11. Let (X_{α}, q_{α}) be a convergence space, f_{α} be a map from (X_{α}, q_{α}) onto a set X and g_{α} be a map from $(X_{\alpha}, \rho(q_{\alpha}))$ onto X defined by $f_{\alpha} = g_{\alpha}$ in underlying sets for each $\alpha \in \Lambda$. If q^* is final convergence structure on X induced by the family $\{g_{\alpha} | \alpha \in \Lambda\}$, then

$$q^* \leq \rho(q) \leq q$$
.

Proof. Let F be a filter on X, if F q-converges to x, then

$$\mathbf{x}_{\alpha} \in \mathbf{g}_{\alpha}^{-1} (\mathbf{x}) = f_{\alpha}^{-1} (\mathbf{x}),$$

$$x_{\alpha} \in q_{\alpha}\left(f_{\alpha}^{-1}\left(F\right)\right) \subset \rho\left(q_{\alpha}\right) \quad \left(f_{\alpha}^{-1}\left(F\right)\right) = \rho\left(q_{\alpha}\right) \quad \left(g_{\alpha}^{-1}\left(F\right)\right).$$

Since q^* is final convergence structure induced by the family $\{g_a \mid a \in A\}$, F q^* -converges to x. Thus $q^* \leq q$. Since $\rho(q)$ is the finest pseudo-topology coarser than q and by proposition 3.10, q^* is a pseudo-topology, $q^* \leq \rho(q) \leq q$.

Proposition 3.12. If (X_{α}, q_{α}) is an almost pseudo-topological space for each $\alpha \in \Lambda$, then q is an almost pseudo-topology.

Proof. Let q^* be the final convergence structure defined in lemma 3.11, If F q^* -converges to x, then $g_{\overline{a}}^{-1}(F)$ $\rho(q_{\overline{a}})$ -converges to $x_{\overline{a}} \in g_{\overline{a}}^{-1}(x)$, Since $(X_{\overline{a}}, q_{\overline{a}})$ is an almost pseudo topological space, for all ultrafilter F on X,

$$x_{\alpha} \in g_{\alpha}^{-1}(x) = f_{\alpha}^{-1}(x)$$
,

$$x_{\alpha} \in \rho(q_{\alpha}) \quad (g_{\alpha}^{-1}(F)) = q_{\alpha}(f_{\alpha}^{-1}(F)).$$

Thus, F q-converges to x. Hence

$$q^*(F) \subset q(F)$$
.

By lemma 3.11, for all ultrafilter F on X,

$$q^*(F) = \rho(q) (F) = q(F).$$

Thus, (X, q) is an almost pseudo-topological space.

From theorem 2.5 and proposition 3.12, we can obtain the following corollary.

Corollary 3.13. If pair (X_i, X_i) of convergence spaces is a pseudo-topologically coherent, then (Y, p) is an almost pseudo-topological space, where p is final convergence structure induced by the family $\{f_i|f_i\colon (X_i,q_i)\longrightarrow Y; \text{ surjection, } i=1,2\}$.

Lemma 3.14. Let f_{α} be a map defined in lemma 3.11, and g_{α} be a map from $(X_{\alpha}, (q_{\alpha}))$ onto X defined by $g_{\alpha} = f_{\alpha}$ in underlying sets for each $\alpha \in \Lambda$. If q' is final conergence structure on X induced by the family $\{g_{\alpha} | \alpha \in \Lambda\}$, then

$$q' \leq \pi(q) \leq q$$
.

Proof. For each $F \in F(X)$, if F q-converges to x, then

$$x_{\alpha} \in g_{\alpha}^{-1}(x) = f_{\alpha}^{-1}(x)$$

$$x_{\alpha} \in q_{\alpha}(f_{\alpha}^{-1}(F)) \subset \pi(q_{\alpha}) \quad (f_{\alpha}^{-1}(F)) = \pi(q_{\alpha})(g_{\alpha}^{-1}(F)).$$

ince q' is final convergence structure induced by the family $\{g_a \mid a \in A\}$, F q'-converges to Thus $q' \leq q$. By proposition 3.5, q' is a pretopology. Since $\pi(q)$ is the finest pretopology coarser than q,

$$q' \leq \pi(q) \leq q$$
.

Proposition 3.15. If (X_a, q_a) is an almost pretopological space for each $a \in A$, then (X, q) is an almost pretopological space.

Proof. Let F be any ultrafilter on X. If F q'-converges to x, then

$$x_{\alpha} \in g_{\alpha}^{-1}(x) = f_{\alpha}^{-1}(x)$$

$$x_{\alpha} \in \pi(q_{\alpha}) (g_{\alpha}^{-1}(F)) = \pi(q_{\alpha})(f_{\alpha}^{-1}(F))$$

ince (X_a, q_a) is an almost pretopological space for each $a \in \Lambda$, $f_a^{-1}(F) = g_a^{-1}(F)$ q_a -conerges to x_a . Thus F q-converges to x, i.e. $q'(F) \subset q(F)$ for all ultrafilter F on X. By mma 3.14, $q(F) \subset \pi(q)(F) \subset q'(F)$ for any filter F on X. Therefore for all ultrafilter on X.

$$q'(F) = \pi(q)(F) = q(F).$$

hus q is an almost pretopology.

References

- .] D. C. Kent, Convergence functions and their related topologies, Fund. Math. LIV, 125-133, (1964).
- , On convergence greups and convergence uniformities, Fund. Math. LX, 213-222, (1967).
-] _____, A note on pretopologies, Fund. Math. LXII, 95-100, (1968).
- Convergence quotient maps, Fund. Math. LXV, 197-205, (1969).
- and G. D. Richardson, Minimal convergence spaces, Trans. A. M. S. 160, 487-499, 1971.
- Locally compact convergence spaces, Michigan Math. J. 22, 353-360, (1975).
- Some product theorems for convergence spaces, Math. Nachr. 87, 43-51, (1979).
- J. W. Nam and H. I. Choi, Pseudo-topological coherence for convergence spaces, *Pusan Kyungnam Math. J.* 2, 54-60, (1986).
-] S. Willard, General topology, Addison-Weselly Pub. Co. Inc., (1970).