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I. Introduction

In this paper we introduce a notion of final convergence structure and investigate some
properties. For notions, not given here, the reader is asked to refer to [1], [2], [3],
[5] and [8]. For a set X, F(X) denotes the set of all filters on X and P(X) the set of
all subsets of X. For each € X, x is the principal ultrafilter containing {x}.

A convergence structure on X is a map g from F(X) into P(X) satisfying the following
conditions:

(1) for each € X, xz€q(x);

(2) for F,GEF(X), if FCG, then ¢(F)Cgq(G);

(3) if x€q(F), then x€q(FNx).

The pair (X, q) is called a convergence space. If x€¢q(F), we say that F g¢-converges
to . The filter Vg (x) obtained by intersecting all filters which g-converges to x is called
the g-neighborhood filter at x. If V,(x) g-converges to x for each x€ X, then q is called
a pretopology, and (X, q) a pretopological space. Pretopology ¢ is called a topology if for
each x€ X, the filter Vo (x) has a filterbase Bq (x) C V4 (x) with the following condition:

YEG(x)E B, (x) implies G(x) € By (y).

II. Preliminaries

For a convergence sturcture ¢ to be a limitierung, it is necessary and sufficient that

the following condition be satisfied:
x€ q(F) and xEq¢(G) implies xEq(FNG).

For g to be a pseudo-topology, the following additional condition is necessary and suffici -
ent:

if F’ q-converges to s for all ultrafilters F’ finer than F, then F g-converges to x.

A convergence structure ¢ is said to be a weakli uniformizable if there exists a set @
of completely regular topologies such that g=inf.Q.

For any convergence space (X, q). let (pX, p(q)) be the convergence space defined on
the same underlying sets as follows:

F p(q)-converges to x if and only if G g-converges to x for each ultrafilter G finer
‘han F.
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Then the space (pX,p(q) is the finest pseudo-topological space coarser than X, and it
is called the pseudo-topological modification of X. Note that X and pX have the same
ultrafilter convergence. A convergence space (X, q) is said to be an almost pseudo-topol-
ogical if q(F)=p(q) (F) for all ultrafiter F on X, i e.X and pX have the same ultrafilter
convergence| Convergence: space (X, q) and (Y,p) are said to be a pseudo-topologically
coherent if p(XXY)=pXXpY.

Let f be a map from a convergence space (X, q) onto a convergence space (Y,p). If
FEF(X), then f(F) will denote the filter on Y generated by {f(F)|FEF}. f is said to be
continuous at a point x€ X if for any filter F g-converges to z, the filter f(F) p-conver-
ges to f(x). If f is continuous at every point x€ X, then f is said to be continuous. The
mapping f is called a convergence quotient 1ap if p is the finest convergence structure on
Y relative to which f is continuous.

Theorem 2.1. ([1]) Let (X,q) be a convergence space. m(q) denoted by: F n(q)-
converges to x if and only if FCVq(x) for each x€ X. Then n{q) is the finest preto-
pology coarser than q.

Theorem 2.2. ([4]) The following statements about f are equvalent:

(1) f is a convergence quoiient map;

(2) A filter F p-converges to vy in Y if and only if there is x in f'(y) and GEF(X)
such that F2f(G) and G ¢-converges to x.

Theorem 2.3. ([2]) A convergence siructure q is weakly uniformizable if and only
if F q-converges to x whenever xENF and ¢(F)+ ¢

Let (X,q) be a convergence space. We may associate with ¢ the set function I de-
fined for a given A X by

I, (A) = x€E A|AEV, (2)}.
Then the set {I;(A)JAC X} is a base for the topology ¢{g) on X.

Theorem 2.4. ([2]) Let q be a weakly uniformizable convergence structure. If q is
a limitierung, then m(q) and ¢(q) are weakly uniformizable.

Theorem 2.5. ([7]) Convergence space (X,q), (Y,p) are almost pseudo-topological
if and only if the pair X, Y is pseudo-topological coherent.

. Final convergence structure

Let X be a set, (Xa,qe) be a convergence space for each a€ 4, f be a map from a
convergence space (Xa,qa) onto X. q¢ is a map from F(X) into P(X) satisfying the following
condition:

for each element x of X, FEF(X), F g-~converges to x if and only if for each aE 4,
fa' (F) qa-converges to xo for some x.€ fz'(z). Then we obtain a convergence structure
q¢ on X that is said to be final convergence structure induced by the family {f.ja€ 4}.

Throughout this section, ¢ mean final convergence structure on X induced by the family

{fela€ A}, where fo is a map from convergence space ( Xa, ge) onto a set X for each a€
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The following facts can be easily verified.

Proposition 3.1. gq is the finest of all convergence structure on X which allow
very fa to be continuous for each a€E A.

Corollary 3.2. If s is final convergence structure induced by the family {fa la€ A},
ten every fo is comvergence quotient map.

Proposition 3.3. A map f from the convergence space ( X, q) onlo a convergence space
Y,p) is continuous if and omly if fofs is continuous for each a€ A,

Lemma 3. 4. For each a€ 4, x.E f3' (x)

fa'(Vg(x)) CVaa( xa).-
Proof.fa'(Va(x)) =fa' (N {FE F(x) k€ ( F) }
=N {fa'(F) FEF(X), xEq(F)}
=N {fa"(F)IFEF(X), fa'(x)CTqal(fa'(F))}
C N {GE F( Xa) lra€ qa( G) }
= Vge( %a) -

Proposition 3.5. Every convergence space of the family { Xa, qo) @E A} is preio-
ological, then q is a pretopology.

Proof.Since Vga( xe) C fa'(Vq(x)) for some z.E fz'(x) and qo is a pretopology for
ach a€ 4,

Za€ qa{ V@al( xa)) Cgal fa' (Vo 2))).
‘hrrefore Vg{x) q-converges to x. Le. q is a pretopology.

Proposition 3. 6. If ( Xe, qa) is a limitierung space, fo injective for each «E A, then
is a limitierung.

Proof.lf F, q-converges to x, i=1,2, then 3’(F) ge-converges to fa'(z) for each
€4, i=1,2. Since ga is a limitierung for each @€ 4 and

fel(F)Nfa'(F)=fa'(F.NF,),
$'(F.NF.) qa~converges to fa'(x). Thus F\NF, g-converges to x. Hence q is limitierung.
Proposition 3.7. Let f:(S,r) — (T,p) be = injective convergence quotient map.

r is limitierung, then p is limitierung.

Proof.Let F,, F,e F(T). If F. p-converges to t i=1,2. By theorem 2.2, there are
wE F(S) such that f(G) < F, and G, r-converges to F’“’(t)’ i=1, 2. Since r is lmitierung,
"N G, r-converges to f~'(t). Since

AGNG)CAGINAG)CFNF,
"N F, p-converges to . Hence p is a limitierung.

Proposition 3.8. If (Xe, qa) is a weakly uniformizable convergence space for each
€4, then q is a weakly uniformizable.

Proof.Let x€NF and ¢( F)# ¢ then F g-converges to some x’'€X.
tence fa'(F) qa-converges to za€ fa'(x’) for each a€ 4, Since zxENF,

fal(mCfad(NF)=Nfa'(F).

ince ga is a weakly uniformizable, fa'(F) ge-converges to x.€ fa'(x).
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Thus F q-converges to x. By theorem 2.3, q is a weakly uniformizable.

Corollary 3.9. If qo is a limitierung and weakly uniformizable for each a€ 4, then
n(q), ¢(q) are weakly uniformizable.

hereafter, (Xa, ga) means a compact convergence space such that for each, FE F(Xq
@, (F) is one-point set for each aE 4, .

Proposition 3. 10. If (Xa, ga) is a pseudo-topological space for each aE A, then q
is a pseudo-topology.

Proof.Let (Xa, go) be a pseudo-topological space for each a€ 4. Given a filter F on
X, let F’ g-converges to x for all ultrafilter F’ finer than F, then fs' (F’) ga-converges
to xa€ fa' (x)} for each a€ A, Since f3' (F)C fa' (F’), Xe is a compact and g, (fa' F))
= {xa}, fa'(F) ga-converges to xa for each a€ 4. By definition of final convergence
structure, F g-converges to x. Therefore (X, q) is a pseudo-topological space.

Lemma 3.11. Let (Xa, go) be a convergence space, fa be a map from (Xe, ga) ontc
a set X and go be a map from (Xa,p(qa)) onto X defined by fo=g. in underlying sets
for each ac A, If q* is final convergence structure on X induced by the family
{ga |aE A}, thefl

*=ple)=q
Proof.Let F be a filter on X, if F g-converges to x, then
€ ga' (x) =fa' (x),
xa€ qa (fa' (F))Cplqa) (fa' (F)) =plaa) (ga' (F)).
Since ¢* is final convergence structure induced by the family {g. |e€ 4}, F g*-converges
to x. Thus ¢*<gq. Since p(q) is the finest pseudo-topology coarser than ¢ and by propo-
sition 3.10, ¢* is a pseudo-topology, ¢*< p(q)=gq.

Proposition 3. 12. If (Xa, ga) is an almost pseudo-topological space for each aE A,
then' q is an almost pseudo-topology.

Proof. Let ¢* be the final convergence structure defined in lemma 3.11, If F q¢*-con-
verges to x, then ga' (F) p(qe)-converges to za€ga' (x), Since (Xa,qa) is an almost
pseudo topological space, for all ultrafilter F on X,

x.Ega' (x) =fa' (2),
za€ p(qa) (ga' (F))=qa (fa' (F)).
Thus, F q-converges to x. Hence
q*(F)Cq(F).
By lemma 3.11, for all ultrafilter F on X,
q*(F)=p(q) (F) =q(F).
Thus, (X, q) is an almost pseudo-topological space.

From theorem 2.5 and proposition 3.12, we can obtain the following corollary.

Corollary 3.13. If pair (X, X,) of convergence spaces is a pseudo-topologically
coherent, then (Y,p) is an almost pseudo-topological space, where p is final conver

gence structure induced by the family {f|f.: (X, @) — Y; surjection, i=1,2}.
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Lemma 3.14. Let fa be a map defined in lemma 3,11, and go be a map from (Xa,
(ga)) onto X defined by ga=fo in underlying sets for each a€ A. If ¢’ is final con-
ergence structure on X induced by the family {ge|aE A}, then

=n(g)Sq.

Proof. For each FEF(X), if F q-converges to x, then

za € ga' (x) = fa' (x),

Za€qa (fa' (F))Cnlq,) (fa' (F))=7(qa) (ga’ (F)).
ince ¢’ is fiml convergence structure induced by the family {ga |#€ 4}, F q™-converges to
. Thus ¢’<gq. By proposition 3.5, ¢’ is a pretopology. Since #{q) is the finest pretopo-
gy coarser than g,

¢=x(g)=q
Proposition 3. 15. If (Xa, ) is an almost pretopological space for each aE A, then
X,q) is an almost pretopological space.

Proof, Let F be any ultrafilter on X. If F q’-converges to x, then

za€ ga' (x) =fa' (),

2 E 7 (qa) (82" (F)) =n(ga)(fa' (F))
sr each a& 4, where ¢’ is the final convergence structure on X defined by lemma 3. 14.
ince (Xa, ga) is an almost pretopological space for each a€ 4, f3' (F)=ga' (F) ga-con-
arges to Xa. Thus F g-converges to x, ie. ¢ (F)Cq(F) for all ultrafilter F on X. By
mma 3.14, q(F)Cwn(q)(F)Cgq (F) for any filter F on X. Therefore for all ultrafilter
on X,

¢’ (F) =n(q) (F)=q(F).

hus ¢ is an almost pretopology.
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