Polyelectrolyte-Metal(II) 이온의 착물화 (제 3 보). Iron(II), Cobalt(II) Nickel(II) 및 Copper(II)와 Branched Poly(ethylene imine) (BPEI)간의 착물생성

Complexation of Polyelectroyte-Metal(II) Ion. III. The Complex Formation of Iron(II), Cobalt(II), Nickel(II) and Copper(II) with Branched Poly(ethylene imine) (BPEI) in Aqueous Solution

  • 김동수 (영남대학교 이과대학 화학과) ;
  • 조태섭 (영남대학교 이과대학 화학과)
  • Dong Soo Kim (Department of Chemistry, Yeungnam University) ;
  • Tae Sub Cho (Department of Chemistry, Yeungnam University)
  • 발행 : 1986.10.20

초록

branched poly(ethylene imine) (BPEI)와 2가 전이금속인 Fe(II), Co(II), Ni(II) 및 Cu(II)간의 착물생성을 가시선 흡수 및 30${\circ}$, 0.1M KCl수용액 중에서 pH적정법으로 연구하였다. M(II)-BPEI착물의 안정도 상수는 M(II)-BPEI착물의 안정도 상수는 Gergor등에 의해 수정된 Bjerrum법으로 계산하였다. M(II)-BPEI착물의 생성 곡선으로 부터 ethylene imine group이 Fe(II)이온에 네자리, Co(II), Ni(II) 및 Cu(II) 이온에 각각 두 자리 배위된 착물이 생성됨을 알 수 있었다. Cu(II)-BPEI착물의 경우 pH 3.4~3.8을 기준으로 산성도가 감소 또는 증가함에 따라 최대 흡광도(${\lambda}_{max}$)는 장파장 쪽으로 이동하고, 흡광도는 pH증가에 따라 감소하였다. 총괄 안정도 상수(log $K_2$)는 Co(II) < Cu(II) < Ni(II) < Fe(II)순으로 증가하였다.

The complex formation of branched poly(ethylene imine) (BPEI) with bivalent transition metal ions, such as Fe(II), Co(II), Ni(II) and Cu(II), have been investigated in terms of visible absorption and pH titration methods in an aqueous solution in 0.1M KCl at 30${\circ}$. The stability constants for M(II)-BPEI complexes was calculated with the modified Bjerrum method. The formation curves of M(II)-BPEI complexes showed that Fe(II), Co(II), Ni(II) and Cu(II) ions formed coordination compounds with four, two, two, and two ethylene imine group, respectively. In the case of Cu(II)-BPEI complex at pH 3.4 ∼ 3.8, ${\lambda}_{max}$ was shifted to the red region with a decrease in the acidity. The overall stability constants (log $K_2$) increased as the following order, Co(II) < Cu(II) < Ni(II) < Fe(II).

키워드

참고문헌

  1. J. Phys. Chem. v.59 H.P. Gregor;L.B. Luttinger;E.M. Loebl
  2. J. Phys. Chem. v.64 D.H. Gold.;H.P. Gregor
  3. J. Polym. Sci., Part A v.2 M. Mandel;J.C. Leyte
  4. J. Polym. Sci., Symposium N. Hojo;H. Shira;S. Hayashi
  5. J. Phys. Chem. v.79 H. Nishikawa;E.Tsuchida
  6. Chem. Soc. Jpn. T. Nonaka;E. Momono;N. Minari;H. Egawa
  7. Macromolecules v.10 M. Palumbo;A. Cosani;M. Terbojevich;E. Peggion
  8. J. Polym. Sci., Polym. Lett. Ed. v.13 J. Furukawa;R.C. Gupta;E. Kobayashi
  9. Chem. Soc. Jpn. H. Shirai;Y. Nio;A. Kurose;S. Hayashi;N. Hojo
  10. J. Polym. Sci., Polym. Chem. Ed. v.23 K. Fujimori
  11. J. Nat. Sci. Yeungnam Univ. D.S. Kim;T.S. Cho
  12. J. Nat. Sci. Yeungnam Univ. D.S. Kim
  13. J. Polym. Sci. v.2 A. Katchalsky;P. Spink
  14. J. Coord. Chem. v.12 K. Hayashi;T. Osawa;K.I. Okamoto;J. Hidaka
  15. Methods of Quantitative Inorganic Analysis K. Kodama
  16. Laboratory Techniques Manual v.I M.I.T.
  17. Vogel's Textbook of Quantitative Inorganic Analysis J. Bassett
  18. Chem. Analy. Series v.XVI Complexation in Analytical Chemistry A. Ringbom
  19. J. Polym. Sci., Part D v.24 E. Tsuchida;H. Nishide
  20. Makromol. Chem. v.115 M. Hatano;T. Nozawa;T. Yamamoto;S. Kambara
  21. Analytical Applications of Complex Equlibria J. Inczedy
  22. J. Phys. Chem. v.59 H.P. Gregor;L.B. Luttinger;E.M. Loebl
  23. J. Phys. Chem. v.64 D.H. Gold;H.P. Gregor