Polarographic Behavior of Cadmium (II) and Copper (II) Complexes of 1,5-Diphenylcarbohydrazide in Dimethylsulfoxide

디메틸술폭시드 속에서 1,5-디페닐카르보히드라지드의 카드뮴 (II) 및 구리 (II) 착물에 대한 폴라로그래피적 거동

  • Chil-Nam Choe (Department of Science Education, College of Education, Chosun Univeristy)
  • 최칠남 (조선대학교 사범대학 과학교육과)
  • Published : 1986.02.20

Abstract

Polarographic behavior of cadmium(II) and copper (II) complexes of 1,5-diphenylcarbohydrazide in dimethylsulfoxide have been investigated by the DC polarography. The reduction processes are estimated as follows; Cd(II)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.12V)}$${\to}$Cd(I)${\cdot}$DPH Complex. Cd(I)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.74V)}$${\to}$Cd(Hg) + nDPH. Cu(II)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.44V)}$${\to}$Cu(I)${\cdot}$DPH Complex. Cu(I)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.84V)}$${\to}$Cu(Hg) + nDPH. The limiting currents of all reduction wave are irreversible. The number of ligand and the dissociation constant for Cu(I)${\cdot}$1.5-diphenylcarbohydrazide complex were found to be 2 and 5.12 ${\times}10^{-8}$, respectively. All reduction waves of complexes are irreversible. Based on the experimental results, the polarographic reductions of complexes in dimethylsulfoxide solution occurred in two one-electron steps.

디메틸술폭시드 속에서 카드뮴(II)과 구리(II)의 1,5-diphenylcarbohydrazide 錯物의 性質을 直流 폴라로그래프로 調査한 結果 各 錯物의 電極過程은 다음과 같이 생각된다. Cd(II)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.12V)}$${\to}$Cd(I)${\cdot}$DPH Complex. Cd(I)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.74V)}$${\to}$ Cd(Hg) + nDPH. Cu(II)${\cdot}$DPH Complex$\frac{e^-}{(E_\frac{1}{2}=-0.44V)}$${\to}$Cu(I)${\cdot}$DPH Complex. Cu(I)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.84V)}$${\to}$Cu(Hg) + nDPH. 모든 波는 擴散에만 依存하고, 또 Cd(I)${\cdot}$DPH 착물의 ligand의 자리수는 2이며, 錯物의 解離常數 Kd는 5.12 ${\times}10^{-8}$이었다. 이들 各 錯物의 還元波는 非可逆的이었으며, 디메틸 술폭시드 溶液속에서 錯物들의 還元波는 1電子 2段階임을 알 수 있다.

Keywords

References

  1. J.Am. Chem. Soc. v.79 I.M. Kolthoff;J.F. Coezee;Idem
  2. Inorganic Chemistry J.E. Huheey
  3. Talanta v.12 S. Wawzonek
  4. Aust. J. Chem. v.17 T.M. Florence;Y.J.Farrar
  5. J. Am. Chem. Soc. v.90 J.L. Sadler; A.J. Bard
  6. Bull. Chem. Soc. Japan. v.41 Y. Sato;N. Tanaka
  7. Electrochim. Acta. v.13 N. Tanaka;Y. Sato
  8. Inorg. Nucl. Chem. Letters v.2 N. Tanaka;Y. Sato
  9. Bull. Chem. Soc. Japan v.42 N. Tanaka
  10. Talanta v.12 R. Takahashi
  11. Anal. Chem. v.34 J.F. Coetzee
  12. J. Inorg. Nucl. Chem. v.23 B. Martin;W.R. Mcwhinie;G.M. Waihd
  13. Ind. Eng. Chem. v.15 D.N. Hume;W.E. Harris
  14. J. Anal. Chem. v.20 L. Meites; J. Meites
  15. Chem. Rev. v.1 I.M. Kolthoff;J.J. Lingane
  16. J. Am. Chem. Soc. v.71 L. Meites
  17. Organic Polarographic Analysis P. Zuman
  18. 化學 v.19 no.7 藤永太一郞;新居敏男
  19. J. Am. Chem. Soc. v.72 B.E. Dougles;H.A. Laitinen;J.C. Bailar
  20. Electrochemical Method A.J. Bard;L. R. Faulkner
  21. Z. Physik. Chem. Sonderheft v.25 J. koryta
  22. Bull. Chem. Soc. Japan v.41 N. Tanaka
  23. J. Am. Chem. Soc. v.72 E. I. Onstott;H. A. Laitinen