Transition Metal Catalyzed the Double Hydrohydroxymethylation of Carbonyl Compounds by a Carbon Monoxide-Water System

전이금속촉매-일산화탄소-물계에 의한 카르보닐화합물의 이중 히드로히드록시메틸화 반응

  • Sang Chul Shim (Department of Industrial Chemistry, Kyungpook National University) ;
  • Kyung Eun Min (Department of Industrial Chemistry, Kyungpook National University) ;
  • Keun Tae Huh (Department of Industrial Chemistry, Kyungpook National University)
  • 심상철 (경북대학교 공과대학 공업화학과) ;
  • 민경은 (경북대학교 공과대학 공업화학과) ;
  • 허근태 (경북대학교 공과대학 공업화학과)
  • Published : 1986.02.20

Abstract

Dialdehydes such as adipaldehyde, glutaraldehyde, and succinaldehyde were readily reduced to give their corresponding 1,6-hexanediol, 1,5-pentanediol, and 1,4-butanediol in good yields in the presence of catalytic amount of hexarhodium hexadecacarbonyl or iron pentacarbonyl in water and methoxyethanol or ethanol at 180$^{\circ}C$ for 4 hr under carbon monoxide atmosphere. Under the same reaction conditions, diketones such as 2,5-hexanedione, 2,4-pentanedione, and 2,3-butanedione afforded their corresponding 2,5-hexanediol, 2,4-pentanediol and 2,3-butanediol in moderate yields. For double hydrohydroxymethylation of dialdehydes or diketones, rhodium or iron carbonyl complexes are more effective than others. Particularly, benzoquinone gave hydroquinone quantitatively.

아디파알데히드, 구르타르알데히드 및 숙신알데히드와 같은 디알데히드는 물-에톡시에탄올 및 에탄올내에 촉매량의 육로듐 십육카르보닐 또는 오카르보닐철의 존재하, 70기압, 일산화탄소, 180$^{\circ}C$, 4시간동안 반응시켜 쉽게 환원되어 대응하는 1,6-헥산디올 및 1,5-펜탄디올 및 1,4-부탄디올이 좋은 수득율로 얻어졌다. 같은 조건하에서 2,5-헥산디온, 2,4-펜탄디온도 대응하는 디올이 보통 수득율로 얻어졌다. 디알데히드의 이중 히드로히드록시메틸화 반응에 대해서는 금속카르보닐 촉매가 다른 촉매보다 더욱 활성적이다. 특히 벤조퀴논은 정량적으로 히드로퀴논을 주었다.

Keywords

References

  1. J. Am. Chem. Soc. v.99 C-H. Cheng;D.E. Hendrikson;R. Eisenberg
  2. J. Am. Chem. Soc. v.100 R.B. King;C.C. Frazier;R.M. Hanes;A.D. King
  3. J. Am. Chem. Soc. v.103 A.D. King, Jr.;R.B. King;D.B. Yang
  4. Chem. Lett. Y. Sugi;A. Matsuda;K. Bando;K. Murata
  5. J. Am. Chem. Soc. v.101 C. Ungermann;V. Landis;S.A. Moya;H. Cohen;H. Walker;R. G. Pearson;R.G. Rinker;P.C. Ford
  6. Tetrahedron Lett. A.F.M. Iqbal
  7. Chem. Lett. T. Okano;K. Fujiwara;H. Konishi;J. Kiji
  8. Chem. Lett. T. Kitamura;T. Joh;N. Hagihara
  9. J. Am. Chem. Soc. v.99 H. Kang;C.H. Mauldrin;T. CCle;W. Siegeir;K. Cann;R. Pettit
  10. Bull. Chem. Soc. Jpn. v.49 Y. Watanabe;S.C. Shim;T. Mitsudo;M. Yamashita;Y. Takegami
  11. Chem. Lett. Y. Watanabe;Y. Shimizu;K. Takatsuki;Y. Takegami
  12. Tetrahedron Lett. S.C. Shim;S. Antebi;H. Alper
  13. J. Org. Chem. v.50 S.C. Shim;S. Antebi;H. Alper
  14. European Patent, EP 0146291 A1 S.C. Shim;H. Alper;D.J.H. Smith
  15. J. Am. Chem. Soc. v.72 J. Fakstorp;D. Raleigh;L.E. Shniepp
  16. J. Am. Chem. Soc. v.68 L.C. Keagle;W. H. Hartung
  17. Tetrahedron S.C. Shim;K.T. Huh;W.H. Park
  18. J. Chem. Soc. Perken II P.M. Hardy;A.C. Nicholls;H.N. Rydon
  19. J. Am. Chem. Soc. v.71 J. English, Jr.;G.W. Barber
  20. Dissertation, Kyoto University S.C. Shim
  21. J. Kor. Chem. Soc. v.23 H.S. Kim;S. C. Shim
  22. 27th Symposium on Organometallic Chemistry v.B105 S. Mura. hashi;K. Ito;T. Maeda
  23. Inorg. Chem. v.18 D.J. Darensberg;M.Y. Darensberg;N. Walker;J.A. Froelich;H.L. Barros
  24. Tetrahedron Lett. S.C. Shim;K.N. Choi
  25. Bull. Chem. Soc. Jpn v.49 Y. Watanabe;S. C. Shim;T. Mitsudo;M. Yamashita;Y. Takegami
  26. J. Am. Chem. Soc. v.99 R.M. Laine;R.G. Rinker;P.C. Ford
  27. J. Am. Chem. Soc. v.71 P. Krumholz;H.M. Stettiner