초록
The MNDO calculations were performed in order to investigate the gas-phase reaction mechanism of 2-propene-1-al oxide, as a model compound of dypnone oxide(1,3-diphenyl-2-butene-1-one oxide) with the chloride ion. Optimized geometries and heats of formation for two probable concerted pathways, CHO and H migration, were determined and their activation energies were obtained. MO results show that although the formyl migration is thermodynamically more favorable than the hydride migration, the latter kinetically predominates over the formyl migration, which is contrary to the established migrating preferences. It is concluded that the hydride migratory propensity is catalyzed by the chloride ion by reducing the capability of the carbonyl ${\pi}$ bond to participate in the migration.