DOI QR코드

DOI QR Code

Test of a Multi-Reference Many-Body Perturbation Theory for the Description of Electron Correlations in four Valence Electron States of Transition Metal Atoms

  • Lee, Yoon-Sup (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Sun, Ho-Sung (Department of Chemistry, Pusan National University) ;
  • Freed, Karl F. (The James Franck Institute and Department of Chemistry, The University of Chicago) ;
  • Hagstrom, S. (Department of Chemistry, Indiana University)
  • Published : 1986.08.20

Abstract

A multi-reference many-body perturbation theory (MRMBPT) method is critically tested in second order by comparing with the corresponding configuration interaction (CI) calculations. Excitation energies of the four-valence-electron states of transition metal atoms and ions are used for the comparison. The agreement between the second order MRMBPT and CI calculations is very reasonable, confirming the reliability of the second order MRMBPT method. The reliability of calculations with the present second order MRMBPT method was only been inferred empirically in the past since most results have been gauged by the agreement with experiment and/or with other MRMBPT calculations based upon different sets of orbitals and configuration spaces. The present MRMBPT method appears to be an efficient ab initio multi-reference method for the calculation of electron correlation effects in atoms and molecules, and it is shown how MRMBPT can be used to estimate core-core and core-valence correlation effects which are often omitted in CI calculations because too many configurations and correlating electrons are involved.

Keywords

References

  1. Ann. Rev. Phys. Chem. v.32 R.J. Bartlett
  2. Chem. Phys. Lett. v.75 M.J. Frisch;R. Frisch;J.A. Pople
  3. J. Chem. Phys. v.72 R. Frisch;M.J. Frisch;J.A. Pople
  4. J. Phys. B v.12 S. Wilson;V.R. Saunders
  5. Errata v.13 S. Wilson;V.R. Saunders
  6. Chem. Phys. Lett. v.12 M.F. Guest;S. Wilson
  7. Chem. Phys. Lett. v.67 V. Kvasnicka;V. Laurinc;S. Biskupic
  8. Chem. Phys. Lett. v.98 R.J. Bartlett;H. Sekino;G.D. Purvis
  9. Theoret. Chim. Acta v.62 M. Urban;J. Noga;V. Kello
  10. J. Chem. Phys. v.81 Y.S. Lee;S.A. Kucharski;R.J. Bartlett
  11. Phys. Sci. v.21 G. Hose;U. Kaldor
  12. J. Phys. B v.12 G. Hose;U. Kaldor
  13. Mol. Phys. v.41 H. Baker;D. Hegarty;M.A. Robb
  14. J. Chem. Phys. v.72 P. Westhaus;M. Moghtaderi
  15. J. Chem. Phys. v.75 M.G. Shepard;K.F. Freed
  16. J. Chem. Phys. v.75 M.G. Shepard;K.F. Freed
  17. Accts. Chem. Res. v.16 K.F. Freed
  18. J. Chem. Phys. v.73 Y.S. Lee;H. Sun;M.G. Sheppard;K.F. Freed
  19. J. Chem. Phys. v.77 Y.S. Lee;K.F. Freed
  20. J. Chem. Phys. v.79 Y.S. Lee;K.F. Freed
  21. J. Chem. Phys. v.79 Y.S. Lee;K.F. Freed;H. Sun;D.L. Yeager
  22. J. Chem. Phys. v.80 H. Sun;K.F. Freed
  23. J. Chem. Phys. v.80 T. Takada;K.F. Freed
  24. details of CI calculations S. Hagstrom
  25. J. Chem. Phys. v.78 C.F. Fischer
  26. J. Chem. Phys. v.75 B.H. Botch;T.H. Dunning;J.F. Harrison
  27. J. Chem. Phys. v.74 C.W. Bauschlicher;S.P. Walch
  28. Int. J. Quantum Chem. S v.17 Y.S. Lee;R.J. Bartlett
  29. J. Mol. Spectrosc. v.10 P.O. Lowdin
  30. Int. J. Quantum Chem. v.15 B.H. Brandow
  31. Atomic Energy Levels v.1;2 C.E. Moore

Cited by

  1. Application of the effective valence shell Hamiltonian method to accurate estimation of oscillator strengths and excitation energies of Mg-like ions vol.108, pp.6, 1986, https://doi.org/10.1063/1.475639
  2. Excitation energies and oscillator strengths of Ca I using multireference many-body perturbation theory vol.59, pp.5, 1986, https://doi.org/10.1103/physreva.59.3432